A210485 Number T(n,k) of parts in all partitions of n in which no part occurs more than k times; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
0, 0, 1, 0, 1, 3, 0, 3, 3, 6, 0, 3, 8, 8, 12, 0, 5, 11, 15, 15, 20, 0, 8, 17, 24, 29, 29, 35, 0, 10, 23, 36, 41, 47, 47, 54, 0, 13, 36, 50, 65, 71, 78, 78, 86, 0, 18, 48, 75, 91, 104, 111, 119, 119, 128, 0, 25, 69, 102, 132, 150, 165, 173, 182, 182, 192
Offset: 0
Examples
T(6,2) = 17: [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [2,2,1,1]. Triangle T(n,k) begins: 0; 0, 1; 0, 1, 3; 0, 3, 3, 6; 0, 3, 8, 8, 12; 0, 5, 11, 15, 15, 20; 0, 8, 17, 24, 29, 29, 35; 0, 10, 23, 36, 41, 47, 47, 54; 0, 13, 36, 50, 65, 71, 78, 78, 86; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k)))) end: T:= (n, k)-> b(n, n, k)[2]: seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[b[n-i*j, i-1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Formula
T(n,k) = Sum_{i=0..k} A213177(n,i).
Comments