cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210485 Number T(n,k) of parts in all partitions of n in which no part occurs more than k times; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 3, 3, 6, 0, 3, 8, 8, 12, 0, 5, 11, 15, 15, 20, 0, 8, 17, 24, 29, 29, 35, 0, 10, 23, 36, 41, 47, 47, 54, 0, 13, 36, 50, 65, 71, 78, 78, 86, 0, 18, 48, 75, 91, 104, 111, 119, 119, 128, 0, 25, 69, 102, 132, 150, 165, 173, 182, 182, 192
Offset: 0

Views

Author

Alois P. Heinz, Jan 23 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains terms with k <= n. T(n,k) = T(n,n) = A006128(n) for k >= n.
For fixed k > 0, T(n,k) ~ 3^(1/4) * log(k+1) * exp(Pi*sqrt(2*k*n/(3*(k+1)))) / (Pi * (8*k*(k+1)*n)^(1/4)). - Vaclav Kotesovec, Oct 18 2018

Examples

			T(6,2) = 17: [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [2,2,1,1].
Triangle T(n,k) begins:
  0;
  0,  1;
  0,  1,  3;
  0,  3,  3,  6;
  0,  3,  8,  8, 12;
  0,  5, 11, 15, 15, 20;
  0,  8, 17, 24, 29, 29, 35;
  0, 10, 23, 36, 41, 47, 47, 54;
  0, 13, 36, 50, 65, 71, 78, 78, 86;
  ...
		

Crossrefs

Main diagonal gives A006128.
T(2n,n) gives A364245.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    T:= (n, k)-> b(n, n, k)[2]:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[b[n-i*j, i-1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..k} A213177(n,i).