cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A210515 Numbers N such that concatenation of N, N, and x generates a prime for x=1 and x=3 and x=7 and x=9.

Original entry on oeis.org

1235, 4061, 8255, 22775, 24665, 36500, 44501, 52343, 54434, 57644, 58109, 59567, 59588, 65018, 69407, 71789, 78689, 94280, 98594, 106748, 114272, 122504, 134369, 137129, 138905, 144302, 162236, 196439, 235808, 238235, 269912, 277919, 278633, 282461, 290534
Offset: 1

Views

Author

Abhiram R Devesh, Jan 26 2013

Keywords

Comments

The primes generated are part of the sequences A210511, A210512, A210513 and A210514.
There are no terms N with d = 3, 9, 15, 21, ... decimal digits since in those cases (10^(d+1)+10) is divisible by 7. - Michael S. Branicky, Apr 28 2025

Crossrefs

Programs

  • Mathematica
    Select[Range[3*10^5],AllTrue[FromDigits/@Table[Join[IntegerDigits[#],IntegerDigits [#],{n}],{n,{1,3,7,9}}],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 07 2021 *)
  • Python
    import numpy as np
    from functools import reduce
    def factors(n):
        return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))
    for i in range(1,50000):
        p1=int(str(i)+str(i)+"1")
        p3=int(str(i)+str(i)+"3")
        p7=int(str(i)+str(i)+"7")
        p9=int(str(i)+str(i)+"9")
        if len(factors(p1))<3 and len(factors(p3))<3 and len(factors(p7))<3 and len(factors(p9))<3:
            print(i, end=',')
    
  • Python
    from gmpy2 import is_prime
    def ok(n):
        b = n*(10**len(str(n))+1)*10
        return all(is_prime(b+x) for x in [1, 3, 7, 9])
    print([N for N in range(3*10**5) if ok(N)]) # Michael S. Branicky, Apr 28 2025
Showing 1-1 of 1 results.