A210537 a(1)=3; for n>1, a(n)>a(n-1) is the minimal for which the set {a(1),a(2),...,a(n)} lacks at least one residue mod 2, 3, ....
3, 5, 9, 11, 15, 21, 23, 29, 33, 35, 39, 45, 51, 53, 59, 65, 71, 75, 81, 89, 93, 99, 101, 105, 113, 119, 123, 131, 135, 141, 143, 149, 155, 159, 161, 165, 171, 179, 185, 189, 191, 201, 203, 213, 215, 219, 233, 243, 245, 249, 255, 263, 269, 273, 275, 281, 285, 291, 309, 311, 315, 323, 339, 341, 345, 351, 353, 365, 375, 383, 389, 395, 399, 413, 423, 425, 429, 431, 441, 453, 455, 465, 471, 473, 479, 491, 495, 501
Offset: 1
Keywords
Examples
All terms are odd, so {a(1), ...,} does not contain a complete residue system mod 2. All terms are 0 or 2 mod 3, so the sequence does not contain a complete residue system mod 3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Charles R Greathouse IV, PARI/GP code for computing terms of this sequence
Programs
-
Mathematica
s = {3}; Do[AppendTo[s,2+Last@s]; While[r = 1+Range@Length@s; Max[Length /@ Union /@ (Mod[s,#]& /@ r) - r] == 0, s[[-1]]++], {87}]; s (* Giovanni Resta, Jan 29 2013 *)
-
PARI
See Greathouse link.
Comments