A210562 Triangle of coefficients of polynomials v(n,x) jointly generated with A210561; see the Formula section.
1, 2, 2, 2, 5, 4, 2, 6, 12, 8, 2, 6, 17, 28, 16, 2, 6, 18, 46, 64, 32, 2, 6, 18, 53, 120, 144, 64, 2, 6, 18, 54, 152, 304, 320, 128, 2, 6, 18, 54, 161, 424, 752, 704, 256, 2, 6, 18, 54, 162, 474, 1152, 1824, 1536, 512, 2, 6, 18, 54, 162, 485, 1372, 3056, 4352
Offset: 1
Examples
First five rows: 1 2 2 2 5 4 2 6 12 8 2 6 17 28 16 First three polynomials v(n,x): 1, 2 + 2*x, 2 + 5*x + 4*x^2.
Links
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210561 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210562 *)
Formula
u(n,x) = x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x) = (x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Peter Bala, Mar 06 2017: (Start)
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1).
E.g.f. for the n-th subdiagonal: exp(2*x)*(2 + 2*x + 2*x^2/2! + 2*x^3/3! + ... + 2*x^(n-1)/(n-1)! + x^n/n!).
Riordan array ((1 + x)/(1 - x), x*(2 + x)).
Row sums A005409 (except for the initial term). (End)
Comments