cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210562 Triangle of coefficients of polynomials v(n,x) jointly generated with A210561; see the Formula section.

Original entry on oeis.org

1, 2, 2, 2, 5, 4, 2, 6, 12, 8, 2, 6, 17, 28, 16, 2, 6, 18, 46, 64, 32, 2, 6, 18, 53, 120, 144, 64, 2, 6, 18, 54, 152, 304, 320, 128, 2, 6, 18, 54, 161, 424, 752, 704, 256, 2, 6, 18, 54, 162, 474, 1152, 1824, 1536, 512, 2, 6, 18, 54, 162, 485, 1372, 3056, 4352
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2012

Keywords

Comments

Last term in row n: 2^(n-1)
Limiting row: 2*3^(n-1)
Alternating row sums: 1,0,1,0,1,0,1,0,...
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
  1
  2   2
  2   5   4
  2   6   12   8
  2   6   17   28   16
First three polynomials v(n,x): 1, 2 + 2*x, 2 + 5*x + 4*x^2.
		

Crossrefs

Row sums A005409. Cf. A208510, A210561.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A210561 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A210562 *)

Formula

u(n,x) = x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x) = (x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Peter Bala, Mar 06 2017: (Start)
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1).
E.g.f. for the n-th subdiagonal: exp(2*x)*(2 + 2*x + 2*x^2/2! + 2*x^3/3! + ... + 2*x^(n-1)/(n-1)! + x^n/n!).
Riordan array ((1 + x)/(1 - x), x*(2 + x)).
Row sums A005409 (except for the initial term). (End)