A210590 Triangle of numbers generated by the Nekrasov-Okounkov formula.
1, 1, 1, 4, 5, 1, 18, 29, 12, 1, 120, 218, 119, 22, 1, 840, 1814, 1285, 345, 35, 1, 7920, 18144, 14674, 5205, 805, 51, 1, 75600, 196356, 185080, 79219, 16450, 1624, 70, 1, 887040, 2427312, 2515036, 1258628, 324569, 43568, 2954, 92, 1, 10886400, 32304240, 37012572, 21034376, 6431733, 1088409, 101178, 4974, 117, 1
Offset: 0
Examples
Table starts as: 1; 1, 1; 4, 5, 1; 18, 29, 12, 1; 120, 218, 119, 22, 1; 840, 1814, 1285, 345, 35, 1; 7920, 18144, 14674, 5205, 805, 51, 1; ...
Links
- G. C. Greubel, Rows n=0..50 of triangle, flattened
- Richard P. Stanley, Some Combinatorial Properties of Hook Lengths, Contents, and Parts of Partitions arXiv:0807.0383 [math.CO], 2009.
Programs
-
Mathematica
w=9; MapIndexed[ CoefficientList[#1,t] Tr[#2-1]! &, CoefficientList[Series[Product[(1-x^i)^(-1-t), {i,w}], {x,0,w}], x]]; or alternatively: CoefficientList[#, t] & /@ Table[1/n! Tr[(NumberOfTableaux[#1]^2 Apply[Times, t + Flatten[hooklength[#1]]^2] &) /@ Partitions[n]], {n,0,9}] or alternatively: Table[1/n!Tr[NumberOfTableaux[#]^2 f[ Flatten[hooklength[#]]^2,e,k,n ]&/@ Partitions[n] ],{n,0,9},{k,0,n}] with e and f defined as: e[n_,v_]:= Tr[Times @@@ Select[Subsets[Table[Subscript[x,j],{j,v}]],Length[#]==n&]]; f[li_List,fun_,par_,k_]:=fun[par,k]/.Thread[Array[Subscript[x,#1]&,Length[li]]->li];
Formula
E.g.f.: Product_{i=1..n} (1 - x^i)^(-1 - t).
Comments