cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210593 Decimal expansion of the series limit of Sum_{k>=1} (-1)^k*log(k)/k^2.

Original entry on oeis.org

1, 0, 1, 3, 1, 6, 5, 7, 8, 1, 6, 3, 5, 0, 4, 5, 0, 1, 8, 8, 6, 0, 0, 2, 8, 8, 2, 2, 1, 2, 2, 4, 2, 1, 8, 3, 6, 5, 9, 3, 8, 4, 7, 7, 6, 3, 7, 4, 9, 1, 1, 1, 6, 3, 3, 3, 4, 2, 9, 4, 2, 4, 7, 1, 9, 6, 2, 0, 4, 5, 3, 0, 9, 2, 0, 5, 4, 3, 6, 3, 2, 4, 9, 5, 3, 1, 7, 8, 0, 1, 2, 5, 3, 1, 9, 0, 3, 5, 6, 3, 9, 8, 2, 3, 1
Offset: 0

Views

Author

R. J. Mathar, Mar 23 2012

Keywords

Comments

First derivative of the Dirichlet eta-function eta(s) at s=2.
Phatisena et al. misspell "Euler" and provide the wrong sign and an invalid 7th digit.

Examples

			0.101316578163504501886002882212242183659384776374911163334294247196204...
		

Crossrefs

Cf. A073002, A013661, A002162, A091812 (s=1), A375506 (s=3/2), A349220 (s=3), A349252 (s=4).

Programs

  • Maple
    1/2*log(2)*Zeta(2)+Zeta(1,2)/2 ; evalf(%) ;
  • Mathematica
    N[(1/12)*Pi^2*(Log[4] - 12*Log[Glaisher] + Log[Pi] + EulerGamma), 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    (log(2)*zeta(2)+zeta'(2))/2 \\ Charles R Greathouse IV, Mar 28 2012

Formula

Decimal expansion of (log(2)*zeta(2) + zeta'(2)) / 2.

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 05 2013