cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A349220 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^3.

Original entry on oeis.org

0, 5, 9, 7, 0, 5, 9, 0, 6, 1, 6, 0, 1, 9, 5, 3, 5, 8, 3, 6, 3, 4, 2, 9, 2, 6, 6, 2, 8, 7, 9, 2, 5, 6, 7, 8, 3, 1, 6, 9, 2, 6, 8, 7, 3, 1, 5, 6, 5, 1, 5, 9, 6, 9, 2, 3, 3, 2, 5, 1, 1, 7, 8, 0, 5, 2, 4, 0, 1, 0, 0, 5, 6, 0, 1, 1, 6, 2, 2, 8, 0, 2, 3, 4, 6, 3, 7, 0, 2, 4, 9, 7, 1, 6, 9, 2, 8, 9, 5, 1, 8, 7, 0, 8, 3, 1, 8, 1, 9, 6, 7, 0, 1, 0, 8, 2, 1, 6, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 11 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 3.

Examples

			0.0597059061601953583634292662879256783169268731565...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Log[2] Zeta[3] + 3 Zeta'[3])/4, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^3) \\ Michel Marcus, Nov 11 2021

Formula

Equals (log(2) * zeta(3) + 3 * zeta'(3)) / 4.

A349252 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^4.

Original entry on oeis.org

0, 3, 3, 4, 7, 8, 8, 0, 4, 5, 7, 8, 5, 6, 5, 0, 6, 6, 3, 8, 5, 9, 5, 6, 8, 5, 4, 7, 8, 8, 7, 3, 7, 7, 9, 9, 7, 1, 3, 7, 5, 9, 7, 3, 0, 4, 0, 5, 7, 3, 4, 9, 7, 4, 8, 2, 8, 6, 6, 5, 7, 6, 4, 2, 8, 8, 6, 8, 3, 6, 2, 2, 5, 2, 7, 9, 5, 8, 8, 3, 8, 1, 0, 7, 9, 5, 3, 4, 7, 4, 7, 5, 8, 6, 5, 8, 6, 4, 8, 6, 2, 2, 8, 2, 6, 6, 5, 1, 1, 1, 1, 2, 1, 8, 5, 5, 1, 7, 9, 8, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 4.

Examples

			0.0334788045785650663859568547887377997137597304057...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Pi^4 Log[2] + 630 Zeta'[4])/720, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^4) \\ Michel Marcus, Nov 12 2021

Formula

Equals (Pi^4 * log(2) + 630 * zeta'(4)) / 720.

A373208 Decimal expansion of Product_{k>=1} f(2*k)^2/(f(2*k-1) * f(2*k+1)), where f(k) = k^(1/k^2).

Original entry on oeis.org

1, 2, 2, 4, 6, 2, 3, 1, 4, 0, 5, 8, 5, 1, 1, 1, 1, 4, 5, 5, 9, 5, 2, 5, 7, 0, 4, 5, 1, 6, 2, 1, 5, 8, 9, 4, 7, 2, 0, 1, 0, 1, 8, 4, 4, 8, 3, 2, 0, 3, 2, 1, 5, 1, 9, 8, 3, 1, 0, 8, 8, 2, 7, 8, 9, 9, 0, 7, 0, 6, 9, 3, 3, 4, 7, 9, 0, 1, 1, 6, 5, 5, 6, 5, 4, 0, 0, 4, 3, 2, 5, 0, 6, 1, 3, 1, 8, 4, 4, 2, 2, 7, 3, 8, 0
Offset: 1

Views

Author

Amiram Eldar, May 28 2024

Keywords

Examples

			(2^(1/2^2)/1^1^2) * (2^(1/2^2)/3^(1/3^2)) * (4^(1/4^2)/3^(1/3^2)) * (4^(1/4^2)/5^(1/5^2)) * ...
1.22462314058511114559525704516215894720101844832032...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(4 * Pi * Exp[EulerGamma] / Glaisher^12)^Zeta[2], 10, 120][[1]]
  • PARI
    (4 * Pi * exp(Euler - 1 + 12*zeta'(-1)))^zeta(2)

Formula

Equals exp(2*eta'(2)) = exp(2*A210593), where eta is the Dirichlet eta function.
Equals (4*Pi*exp(gamma)/A^12)^zeta(2), where gamma is Euler's constant (A001620) and A is the Glaisher-Kinkelin constant (A074962).

A375506 Decimal expansion of the first derivative of the Dirichlet eta-function eta(s) at s=3/2.

Original entry on oeis.org

1, 2, 8, 6, 7, 4, 7, 5, 0, 8, 3, 0, 3, 5, 7, 1, 9, 0, 0, 9, 5, 9, 5, 2, 9, 2, 9, 9, 1, 0, 3, 0, 1, 3, 7, 5, 7, 1, 1, 4, 2, 1, 8, 5, 3, 5, 4, 2, 4, 9, 3, 2, 2, 2, 8, 6, 2, 0, 9, 0, 4, 7, 2, 3, 7, 7, 4, 0, 7, 0, 1, 6, 5, 6, 0, 8, 8, 8, 7, 6, 8, 2, 8, 1, 1, 8, 9, 4, 1, 3, 2, 0, 9, 2, 6, 3
Offset: 0

Views

Author

R. J. Mathar, Aug 18 2024

Keywords

Examples

			0.12867475083035719009595292991030137571142185354249...
		

Crossrefs

Cf. A091812 (at s=1), A210593 (at s=2), A349220 (at s=3), A078434 (zeta(3/2)), A375503 (zeta'(3/2)).

Programs

  • Maple
    s :=3/2 ; 2^(1-s)*log(2)*Zeta(s)+(1-2^(1-s))*Zeta(1,s) ; evalf(%) ;
  • Mathematica
    RealDigits[DirichletEta'[3/2], 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)

Formula

Equals log(2)*zeta(3/2)/sqrt(2) +(1-1/sqrt(2))*zeta'(3/2) = Sum_{i>=1} (-1)^i*log(i)/i^(3/2).

A369885 Decimal expansion of Sum_{k>=1} log(k+1)/k^2.

Original entry on oeis.org

1, 8, 0, 0, 7, 5, 5, 0, 5, 6, 0, 0, 5, 2, 8, 2, 9, 9, 1, 4, 9, 6, 6, 0, 6, 0, 1, 4, 2, 1, 4, 8, 4, 3, 1, 8, 1, 4, 4, 5, 6, 6, 3, 7, 8, 3, 8, 1, 8, 4, 1, 7, 9, 3, 0, 2, 7, 1, 8, 6, 6, 7, 5, 9, 1, 7, 2, 9, 9, 8, 8, 3, 1, 7, 6, 3, 8, 6, 3, 1, 1, 8, 0, 5, 1, 5, 9, 2, 9, 8, 4, 3, 7, 8, 8, 9, 2, 4, 3, 8, 1, 0, 9, 8, 9
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2024

Keywords

Examples

			1.80075505600528299149660601421484318144566378381841...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^(k+1)*Zeta(k)/(k-2), k = 3 .. infinity) - Zeta(1, 2), 120)
  • Mathematica
    RealDigits[NIntegrate[HarmonicNumber[x]/x^2, {x, 1, Infinity}, WorkingPrecision -> 120]][[1]]
  • PARI
    sumpos(k = 1, log(k+1)/k^2)
    
  • PARI
    sumalt(k = 3, (-1)^(k+1) * zeta(k)/(k-2)) - zeta'(2)

Formula

Equals Integral_{x>=1} H(x)/x^2 dx, where H(x) is the harmonic number for real variable x (Shamos, 2011).
Equals -zeta'(2) + Sum_{k>=3} (-1)^(k+1)*zeta(k)/(k-2) (Mező, 2014).
Equals Sum_{k>=1} lambda(k)*H(k)/(k^2*k!) + 1 + zeta(3) - gamma * zeta(2), where lambda(k) = abs(A006232(k)/A006233(k)) is the n-th non-alternating Cauchy number, H(k) = A001008(k)/A002805(k) is the k-th harmonic number, and gamma is Euler's constant (A001620) (Candelpergher and Coppo, 2012). - Amiram Eldar, Mar 18 2024
Showing 1-5 of 5 results.