cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A210593 Decimal expansion of the series limit of Sum_{k>=1} (-1)^k*log(k)/k^2.

Original entry on oeis.org

1, 0, 1, 3, 1, 6, 5, 7, 8, 1, 6, 3, 5, 0, 4, 5, 0, 1, 8, 8, 6, 0, 0, 2, 8, 8, 2, 2, 1, 2, 2, 4, 2, 1, 8, 3, 6, 5, 9, 3, 8, 4, 7, 7, 6, 3, 7, 4, 9, 1, 1, 1, 6, 3, 3, 3, 4, 2, 9, 4, 2, 4, 7, 1, 9, 6, 2, 0, 4, 5, 3, 0, 9, 2, 0, 5, 4, 3, 6, 3, 2, 4, 9, 5, 3, 1, 7, 8, 0, 1, 2, 5, 3, 1, 9, 0, 3, 5, 6, 3, 9, 8, 2, 3, 1
Offset: 0

Views

Author

R. J. Mathar, Mar 23 2012

Keywords

Comments

First derivative of the Dirichlet eta-function eta(s) at s=2.
Phatisena et al. misspell "Euler" and provide the wrong sign and an invalid 7th digit.

Examples

			0.101316578163504501886002882212242183659384776374911163334294247196204...
		

Crossrefs

Cf. A073002, A013661, A002162, A091812 (s=1), A375506 (s=3/2), A349220 (s=3), A349252 (s=4).

Programs

  • Maple
    1/2*log(2)*Zeta(2)+Zeta(1,2)/2 ; evalf(%) ;
  • Mathematica
    N[(1/12)*Pi^2*(Log[4] - 12*Log[Glaisher] + Log[Pi] + EulerGamma), 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    (log(2)*zeta(2)+zeta'(2))/2 \\ Charles R Greathouse IV, Mar 28 2012

Formula

Decimal expansion of (log(2)*zeta(2) + zeta'(2)) / 2.

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 05 2013

A349252 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^4.

Original entry on oeis.org

0, 3, 3, 4, 7, 8, 8, 0, 4, 5, 7, 8, 5, 6, 5, 0, 6, 6, 3, 8, 5, 9, 5, 6, 8, 5, 4, 7, 8, 8, 7, 3, 7, 7, 9, 9, 7, 1, 3, 7, 5, 9, 7, 3, 0, 4, 0, 5, 7, 3, 4, 9, 7, 4, 8, 2, 8, 6, 6, 5, 7, 6, 4, 2, 8, 8, 6, 8, 3, 6, 2, 2, 5, 2, 7, 9, 5, 8, 8, 3, 8, 1, 0, 7, 9, 5, 3, 4, 7, 4, 7, 5, 8, 6, 5, 8, 6, 4, 8, 6, 2, 2, 8, 2, 6, 6, 5, 1, 1, 1, 1, 2, 1, 8, 5, 5, 1, 7, 9, 8, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 4.

Examples

			0.0334788045785650663859568547887377997137597304057...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Pi^4 Log[2] + 630 Zeta'[4])/720, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^4) \\ Michel Marcus, Nov 12 2021

Formula

Equals (Pi^4 * log(2) + 630 * zeta'(4)) / 720.

A375506 Decimal expansion of the first derivative of the Dirichlet eta-function eta(s) at s=3/2.

Original entry on oeis.org

1, 2, 8, 6, 7, 4, 7, 5, 0, 8, 3, 0, 3, 5, 7, 1, 9, 0, 0, 9, 5, 9, 5, 2, 9, 2, 9, 9, 1, 0, 3, 0, 1, 3, 7, 5, 7, 1, 1, 4, 2, 1, 8, 5, 3, 5, 4, 2, 4, 9, 3, 2, 2, 2, 8, 6, 2, 0, 9, 0, 4, 7, 2, 3, 7, 7, 4, 0, 7, 0, 1, 6, 5, 6, 0, 8, 8, 8, 7, 6, 8, 2, 8, 1, 1, 8, 9, 4, 1, 3, 2, 0, 9, 2, 6, 3
Offset: 0

Views

Author

R. J. Mathar, Aug 18 2024

Keywords

Examples

			0.12867475083035719009595292991030137571142185354249...
		

Crossrefs

Cf. A091812 (at s=1), A210593 (at s=2), A349220 (at s=3), A078434 (zeta(3/2)), A375503 (zeta'(3/2)).

Programs

  • Maple
    s :=3/2 ; 2^(1-s)*log(2)*Zeta(s)+(1-2^(1-s))*Zeta(1,s) ; evalf(%) ;
  • Mathematica
    RealDigits[DirichletEta'[3/2], 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)

Formula

Equals log(2)*zeta(3/2)/sqrt(2) +(1-1/sqrt(2))*zeta'(3/2) = Sum_{i>=1} (-1)^i*log(i)/i^(3/2).
Showing 1-3 of 3 results.