A210593 Decimal expansion of the series limit of Sum_{k>=1} (-1)^k*log(k)/k^2.
1, 0, 1, 3, 1, 6, 5, 7, 8, 1, 6, 3, 5, 0, 4, 5, 0, 1, 8, 8, 6, 0, 0, 2, 8, 8, 2, 2, 1, 2, 2, 4, 2, 1, 8, 3, 6, 5, 9, 3, 8, 4, 7, 7, 6, 3, 7, 4, 9, 1, 1, 1, 6, 3, 3, 3, 4, 2, 9, 4, 2, 4, 7, 1, 9, 6, 2, 0, 4, 5, 3, 0, 9, 2, 0, 5, 4, 3, 6, 3, 2, 4, 9, 5, 3, 1, 7, 8, 0, 1, 2, 5, 3, 1, 9, 0, 3, 5, 6, 3, 9, 8, 2, 3, 1
Offset: 0
Examples
0.101316578163504501886002882212242183659384776374911163334294247196204...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- S. Phatisena, R. E. Amritkar, P. V. Panat, Exchange and correlation potential for a two-dimensional electron gas at finite temperatures, Phys. Rev. A 34 (1986) 5070.
- Wikipedia, Dirichlet eta function
Crossrefs
Programs
-
Maple
1/2*log(2)*Zeta(2)+Zeta(1,2)/2 ; evalf(%) ;
-
Mathematica
N[(1/12)*Pi^2*(Log[4] - 12*Log[Glaisher] + Log[Pi] + EulerGamma), 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
-
PARI
(log(2)*zeta(2)+zeta'(2))/2 \\ Charles R Greathouse IV, Mar 28 2012
Formula
Decimal expansion of (log(2)*zeta(2) + zeta'(2)) / 2.
Extensions
Extended to 105 digits by Jean-François Alcover, Feb 05 2013
Comments