A210595 Triangle of coefficients of polynomials v(n,x) jointly generated with A209999; see the Formula section.
1, 2, 1, 3, 3, 2, 4, 6, 7, 3, 5, 10, 16, 13, 5, 6, 15, 30, 35, 25, 8, 7, 21, 50, 75, 76, 46, 13, 8, 28, 77, 140, 181, 157, 84, 21, 9, 36, 112, 238, 371, 413, 317, 151, 34, 10, 45, 156, 378, 686, 924, 911, 625, 269, 55, 11, 55, 210, 570, 1176, 1848, 2206, 1949, 1211, 475, 89
Offset: 1
Examples
First few rows are: 1; 2, 1; 3, 3, 2; 4, 6, 7, 3; 5, 10, 16, 13, 5; 6, 15, 30, 35, 25, 8; 7, 21, 50, 75, 76, 46, 13; First few polynomials v(n,x) are: v(1, x) = 1; v(2, x) = 2 + 1*x; v(3, x) = 3 + 3*x + 2*x^2; v(4, x) = 4 + 6*x + 7*x^2 + 3*x^3; v(5, x) = 5 + 10*x + 16*x^2 + 13*x^3 + 5*x^4;
Links
- G. C. Greubel, Rows n = 1..30 of the triangle, flattened
Programs
-
Mathematica
(* First program *) u[1, x_]:= 1; v[1, x_]:= 1; z = 16; u[n_, x_]:= x*u[n-1, x] + (1+x)*v[n-1, x] + 1; v[n_, x_]:= x*u[n-1, x] + v[n-1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210565 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210595 *) (* Second program *) v[n_, x_]:= v[n, x]= If[n<2, n+1 +n*x, (1+x)*v[n-1, x] +x^2*v[n-2, x] +1]; T[n_]:= CoefficientList[Series[v[n, x], {x,0,n}], x]; Table[T[n-1], {n, 12}]//Flatten (* G. C. Greubel, May 24 2021 *)
-
Sage
@CachedFunction def v(n,x): return n+1+n*x if (n<2) else (1+x)*v(n-1,x) +x^2*v(n-2,x) +1 def T(n): return taylor( v(n,x) , x,0,n).coefficients(x, sparse=False) flatten([T(n-1) for n in (1..12)]) # G. C. Greubel, May 24 2021
Formula
u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x) + 1,
v(n,x) = x*u(n-1,x) + v(n-1,x) + 1,
where u(1,x) = 1, v(1,x) = 1.
T(n, k) = [x^k]( v(n,x) ), where v(n, x) = (1+x)*v(n-1, x) + x^2*v(n-2, x) + 1, v(1, x) = 1, and v(2, x) = 2 + x. - G. C. Greubel, May 24 2021
Comments