A346434 Triangle read by rows of numbers with n 1's and n 0's in their representation in base of Fibonacci numbers (A210619), written as those 1's and 0's.
10, 1001, 1010, 100101, 101001, 101010, 10010101, 10100101, 10101001, 10101010, 1001010101, 1010010101, 1010100101, 1010101001, 1010101010, 100101010101, 101001010101, 101010010101, 101010100101, 101010101001, 101010101010
Offset: 1
Examples
Triangle begins: k=1 k=2 k=3 k=4 n=1: 10 n=2: 1001, 1010, n=3: 100101, 101001, 101010, n=4: 10010101, 10100101, 10101001, 10101010 ... For n=5,k=3, the 10 and 01 digit pairs are vvvvvv k = 3 pairs 10 T(5,3) = 1010100101 ^^^^ n-k = 2 pairs 01
Links
Programs
-
PARI
T(n,k) = (10*100^n - 9*100^(n-k)) \ 99;
Comments