cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A342726 Niven numbers in base i-1: numbers that are divisible by the sum of their digits in base i-1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 16, 18, 20, 24, 25, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 50, 54, 60, 64, 65, 66, 70, 77, 80, 88, 90, 96, 99, 100, 110, 112, 120, 124, 125, 126, 130, 140, 144, 145, 147, 150, 156, 160, 168, 170, 180, 182, 184, 185, 186, 190, 192
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Comments

Numbers k that are divisible by A066323(k).
Equivalently, Niven numbers in base -4, since A066323(k) is also the sum of the digits of k in base -4.

Examples

			2 is a term since its representation in base i-1 is 1100 and 1+1+0+0 = 2 is a divisor of 2.
10 is a term since its representation in base i-1 is 111001100 and 1+1+1+0+0+1+1+0+0 = 5 is a divisor of 10.
		

Crossrefs

Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2).

Programs

  • Mathematica
    v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := Divisible[n, Total[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]]; Select[Range[200], q]

A342729 Self numbers in base i-1: numbers not of the form k + A066323(k).

Original entry on oeis.org

1, 3, 5, 7, 9, 22, 24, 26, 39, 41, 43, 56, 58, 60, 73, 75, 77, 90, 92, 94, 107, 109, 111, 136, 138, 140, 153, 155, 157, 170, 172, 174, 199, 201, 203, 216, 218, 220, 233, 235, 237, 262, 264, 266, 279, 281, 283, 296, 298, 300, 313, 315, 317, 330, 332, 334, 347, 349
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Comments

Equivalently, self numbers in base -4, since A066323(k) is also the sum of the digits of k in base -4.
Analogous to self numbers (A003052) using base i-1 representation (A271472) instead of decimal expansion.
The number of terms not exceeding 10^k, for k=1,2,..., is 5, 20, 155, 1507, 15008, 150007, 1500014, 15000011. Is the asymptotic density of this sequence exactly 3/20?

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Similar sequences: A003052 (decimal), A010061 (binary), A010064 (base 4), A010067 (base 6), A010070 (base 8), A339211 (Zeckendorf), A339212 (dual Zeckendorf), A339213 (base phi), A339214 (factorial base), A339215 (primorial base).

Programs

  • Mathematica
    s[n_] := Module[{v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}}, Plus @@ Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]; f[n_] := n + s[n]; m = 1000; Complement[Range[m], Select[Union@Array[f, m], # <= m &]]

A342728 a(n) is the least number k such that A066323(k) = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 23, 39, 55, 71, 87, 103, 359, 615, 871, 1127, 1383, 1639, 5735, 9831, 13927, 18023, 22119, 26215, 91751, 157287, 222823, 288359, 353895, 419431, 1468007, 2516583, 3565159, 4613735, 5662311, 6710887, 23488103, 40265319, 57042535, 73819751
Offset: 0

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Comments

a(n) is the least number k whose sum of digits in base i-1 (or in base -4) is n.

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{1,0,0,0,0,16,-16}, Range[7], 50]]

Formula

a(n) = n for n <= 7, and a(n) = a(n-1) + 16*a(n-6) - 16*a(n-7) for n > 7.
G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 - 15*x^6)/(1 - x - 16*x^6 + 16*x^7). - Stefano Spezia, Mar 20 2021
From Greg Dresden, Jun 21 2021: (Start)
a(3*n+1) = (24 + (4^n)*(25 - 9*(-1)^n))/40.
a(3*n+2) = (24 + (4^n)*(50 + 6*(-1)^n))/40.
a(3*n+3) = (24 + (4^n)*(75 + 21*(-1)^n))/40. (End)

A342725 Numbers that are palindromic in base i-1.

Original entry on oeis.org

0, 1, 13, 17, 189, 205, 257, 273, 3005, 3069, 3277, 3341, 4033, 4097, 4305, 4369, 48061, 48317, 49149, 49405, 52173, 52429, 53261, 53517, 64449, 64705, 65537, 65793, 68561, 68817, 69649, 69905, 768957, 769981, 773309, 774333, 785405, 786429, 789757, 790781, 834509
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Crossrefs

Similar sequences: A002113 (decimal), A006995 (binary), A014190 (base 3), A014192 (base 4), A029952 (base 5), A029953 (base 6), A029954 (base 7), A029803 (base 8), A029955 (base 9), A046807 (factorial base), A094202 (Zeckendorf), A331191 (dual Zeckendorf), A331891 (negabinary), A333423 (primorial base).

Programs

  • Mathematica
    v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := PalindromeQ @ FromDigits[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]; Select[Range[0, 10^4], q]

Formula

13 is a term since its base-(i-1) presentation is 100010001 which is palindromic.

A344345 Digitally balanced numbers in Gray code: numbers whose binary reflected Gray code has the same number of 0's as 1's.

Original entry on oeis.org

3, 8, 12, 14, 33, 35, 39, 47, 49, 51, 55, 57, 59, 61, 130, 132, 134, 136, 140, 142, 144, 152, 156, 158, 160, 176, 184, 188, 190, 194, 196, 198, 200, 204, 206, 208, 216, 220, 222, 226, 228, 230, 232, 236, 238, 242, 244, 246, 250, 517, 521, 523, 525, 529, 531, 535
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			8 is a term since its Gray code, 1100, has 2 0's and 2 1's.
33 is a term since its Gray code, 110001, has 3 0's and 3 1's.
		

Crossrefs

Similar sequences: A031443 (binary), A210619 (Zeckendorf), A342727 (base i-1).

Programs

  • Mathematica
    gc[n_] := gc[n] = If[n <= 1, n, 2^(b = Floor@Log2[n]) + gc[2^(b + 1) - 1 - n]]; gcDigBalQ[n_] := Equal @@ DigitCount[gc[n], 2, {0, 1}]; Select[Range[500], gcDigBalQ]
Showing 1-5 of 5 results.