cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210644 Decimal expansion of cos(2*Pi/17).

Original entry on oeis.org

9, 3, 2, 4, 7, 2, 2, 2, 9, 4, 0, 4, 3, 5, 5, 8, 0, 4, 5, 7, 3, 1, 1, 5, 8, 9, 1, 8, 2, 1, 5, 6, 3, 3, 8, 6, 2, 6, 2, 5, 8, 7, 7, 7, 7, 9, 4, 5, 1, 1, 6, 9, 2, 8, 2, 4, 8, 3, 5, 0, 0, 1, 1, 8, 6, 0, 5, 3, 6, 0, 4, 6, 5, 6, 9, 6, 4, 4, 4, 9, 8, 1, 2, 8, 0, 7, 4
Offset: 0

Views

Author

Bruno Berselli, Mar 26 2012

Keywords

Comments

Constant related to the constructibility of the regular heptadecagon. The "Disquisitiones Arithmeticae" of Gauss contains the following equivalent expression:
-1/16+(1/16)*sqrt(17)+(1/16)*sqrt(34-2*sqrt(17))+(1/8)*sqrt(17+3*sqrt(17)-sqrt(34-2*sqrt(17))-2*sqrt((34+2*sqrt(17)))).
This value is a root of the polynomial 256*x^8+128*x^7-448*x^6-192*x^5+240*x^4+80*x^3-40*x^2-8*x+1.
The continued fraction expansion of cos(2*Pi/17) is 0, 1, 13, 1, 4, 4, 2, 1, 1, 2, 4, 425, 1, 2, 5, 3, 1, 1, 1, 1, 1, 4, 4, 10, 3, 2, 1,...

Examples

			cos(2*Pi/17) = 0.9324722294043558045731158918215633862625877779451169...
		

References

  • C. F. Gauss, Disquisitiones Arithmeticae, 1801 (Lipsia), p. 662 (par. 365).
  • Ian Stewart, Professor Stewart's Cabinet of Mathematical Curiosities, BASIC Books, a member of the Perseus Books Group, NY, 2009, "Why Gauss Became a Mathematician", pp. 146 - 149.
  • Ian Stewart, Why Beauty Is Truth, A History of Symmetry, BASIC Books, a member of the Perseus Books Group, NY 2007, pp. 136.

Crossrefs

Programs

  • Mathematica
    RealDigits[Cos[2Pi/17], 10, 105][[1]]
    RealDigits[(-1 + Sqrt[17] + Sqrt[34 - 2 Sqrt[17]] + Sqrt[68 + 12 Sqrt[17] - 4 Sqrt[170 + 38 Sqrt[17]]])/16, 10, 111][[1]] (* Robert G. Wilson v, Aug 09 2012 *)
  • Maxima
    fpprec:90; ev(bfloat(cos(2*%pi/17)));
  • PARI
    cos(2*Pi/17)
    

Formula

Equals (i^(4/17) - i^(30/17))/2. - Peter Luschny, Apr 04 2020