A256579 Integer areas of integer-sided triangles where at least one of the three altitudes is of prime length.
6, 12, 30, 60, 84, 168, 330, 546, 660, 1092, 1224, 1710, 2448, 3036, 3420, 6072, 6090, 7440, 12180, 12654, 14880, 17220, 19866, 25308, 25944, 34440, 37206, 39732, 51330, 51888, 56730, 74412, 75174, 89460, 97236, 102660, 113460, 123240, 142926, 150348, 176220
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Altitude
- Eric Weisstein's World of Mathematics, Isosceles Triangle
- Eric Weisstein's World of Mathematics, Right Triangle
Programs
-
Maple
# program using the formula lst:={}:for n from 2 to 50 do:p:=ithprime(n):p1:=(p^3-p)/4:p2:=(p^3-p)/2:lst:=lst union {p1} union {p2}:od:print(lst):
-
Mathematica
nn = 300; lst = {}; Do[s = (a + b + c)/2; area2 = s (s - a) (s - b) (s - c); If[area2>0 && IntegerQ[Sqrt[area2]]&&(PrimeQ[(2*Sqrt[area2])/a]|| PrimeQ[(2*Sqrt[area2])/b]||PrimeQ[(2*Sqrt[area2])/c]), AppendTo[lst, Sqrt[area2]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Formula
a(n) = (prime(n)^3 - prime(n))/4 for the right triangles;
a(n) = (prime(n)^3 - prime(n))/2 for the isosceles triangles.
Comments