A210656 Expansion of psi(x^3) * phi(-x)^2 / phi(-x^2) in power of x where phi(), psi() are Ramanujan theta functions.
1, 8, 36, 130, 412, 1176, 3105, 7712, 18192, 41098, 89476, 188592, 386322, 771528, 1506036, 2879688, 5403628, 9966408, 18092599, 32366288, 57117660, 99526362, 171378512, 291841464, 491812740, 820684904, 1356794820, 2223458146, 3613417008, 5825889936
Offset: 0
Keywords
Examples
1 + 8*x + 36*x^2 + 130*x^3 + 412*x^4 + 1176*x^5 + 3105*x^6 + 7712*x^7 + ... q^3 + 8*q^7 + 36*q^11 + 130*q^15 + 412*q^19 + 1176*q^23 + 3105*q^27 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A001936.
Programs
-
Mathematica
nmax = 30; CoefficientList[Series[Product[((1 - x^(2*k))^4 * (1 - x^(6*k))^2 / ((1 - x^k)^4 * (1 - x^(3*k)) * (1 - x^(4*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A)^4 * eta(x^3 + A) * eta(x^ 4 + A)) )^2, n))}
Formula
Expansion of q^(-3/4) * ( eta(q^2)^4 * eta(q^6)^2 / (eta(q)^4 * eta(q^3) * eta(q^ 4)) )^2 in powers of q.
Euler transform of period 12 sequence [ 8, 0, 10, 2, 8, -2, 8, 2, 10, 0, 8, 0, ...].
A001936(9*n + 2) - A001936(n) = 4 * a(3*n). A001936(9*n + 5) = 4 * a(3*n + 1). A001936(9*n + 8) = 4 * a(3*n + 2).
a(n) ~ exp(sqrt(3*n)*Pi) / (32*sqrt(2)*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Comments