A210676 a(0)=1; thereafter a(n) = -3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
1, -3, 51, -2163, 171231, -21785223, 4065116811, -1045879150683, 354837765112791, -153492920593758543, 82453488412268175171, -53850296379425229208803, 42020794900180632536559951, -38611325264740403135096141463, 41264215393801752999038147563131, -50749285521783354479522581233836523
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..200
Programs
-
Maple
f:=proc(n,k) option remember; local i; if n=0 then 1 else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end; g:=k->[seq(f(n,k),n=0..40)]; g(-3);
-
Mathematica
nmax=20; Table[(CoefficientList[Series[1/(3*Cosh[x]-2), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
Formula
E.g.f.: 1/(3*cosh(x)-2) (even coefficients). - Vaclav Kotesovec, Mar 14 2015
a(n) ~ (-1)^n * (2*n)! / (sqrt(5) * 2^(2*n) * (arccos(sqrt(5/6)))^(2*n+1)). - Vaclav Kotesovec, Mar 14 2015
Comments