A210679 Number of distinct prime factors <= 7 of n.
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 2, 2, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 2, 2, 0, 1, 1, 2, 0, 3, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (-3,-5,-6,-6,-5,-3,0,3,5,6,6,5,3,1).
Crossrefs
Programs
-
Haskell
a210679 = length . takeWhile (<= 7) . a027748_row
-
Mathematica
Join[{0},Table[Count[FactorInteger[n][[All,1]],?(#<8&)],{n,2,100}]] (* _Harvey P. Dale, Aug 18 2021 *) a[n_] := PrimeNu[GCD[n, 210]]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
-
PARI
a(n) = omega(gcd(n, 210)); \\ Amiram Eldar, Sep 16 2023
Formula
a(n) <= 4.
a(n) = A001221(n) iff n is 7-smooth: a(A002473(n)) = A001221(A002473(n)). [corrected by Amiram Eldar, Sep 16 2023]
From Amiram Eldar, Sep 16 2023: (Start)
Additive with a(p^e) = 1 if p <= 7, and 0 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 247/210. (End)
Comments