cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210698 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant = 0 (mod 3).

Original entry on oeis.org

1, 8, 33, 90, 209, 528, 889, 1432, 2673, 3802, 5297, 8448, 11025, 14216, 20625, 25546, 31393, 42768, 51145, 60824, 79233, 92394, 107297, 135168, 154657, 176392, 216513, 244090, 274481, 330000, 367641, 408728, 483153, 533050, 587089
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2012

Keywords

Comments

A210698(n)+2*A211071(n)=n^4.
For a guide to related sequences, see A210000.

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
    v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
    w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
    Table[u[n], {n, 1, z1}] (* A210698 *)
    Table[v[n], {n, 1, z1}] (* A211071 *)
    Table[w[n], {n, 1, z1}] (* A211071 *)
    LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {1, 8, 33, 90, 209, 528, 889, 1432, 2673, 3802, 5297, 8448, 11025}, 40] (* Vincenzo Librandi, Dec 01 2016 *)
  • Python
    from _future_ import division
    def A210698(n):
        if n % 3 == 0:
            return 11*n**4//27
        elif n % 3 == 1:
            return (11*n**4 - 8*n**3 + 6*n**2 + 4*n + 14)//27
        else:
            return (11*n**4 - 16*n**3 + 24*n**2 + 32*n + 8)//27 # Chai Wah Wu, Nov 30 2016

Formula

From Chai Wah Wu, Nov 30 2016: (Start)
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n > 13.
G.f.: x*(-x^11 - 9*x^10 - 23*x^9 - 115*x^8 - 109*x^7 - 139*x^6 - 219*x^5 - 91*x^4 - 53*x^3 - 25*x^2 - 7*x - 1)/((x - 1)^5*(x^2 + x + 1)^4).
If r = floor(n/3), s = floor((n-1)/3)+1 and t = floor((n-2)/3)+1, then:
a(n) = r^4 + 4*r^3*s + 4*r^3*t + 4*r^2*s^2 + 8*r^2*s*t + 4*r^2*t^2 + s^4 + 6*s^2*t^2 + t^4.
If n == 0 mod 3, then a(n) = 11*n^4/27.
If n == 1 mod 3, then a(n) = (11*n^4 - 8*n^3 + 6*n^2 + 4*n + 14)/27.
If n == 2 mod 3, then a(n) = (11*n^4 - 16*n^3 + 24*n^2 + 32*n + 8)/27. (End)