A210699 Number of bilaterally asymmetric 8-hoops with n symbols and no a-rooted trees.
1, 71, 918, 6667, 33665, 131616, 425866, 1192178, 2977857, 6785605, 14339006, 28451061, 53519713, 96176822, 166119570, 277155796, 448497281, 706337523, 1085753062, 1632969935, 2408039361, 3487969276, 4970360858, 6977601702, 9661669825, 13209605201, 17849708046
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Williamson, S. G. The combinatorial analysis of patterns and the principle of inclusion-exclusion. Discrete Math. 1 (1972), no. 4, 357--388. MR0299493 (45 #8541)
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Magma
I:=[1, 71, 918, 6667, 33665, 131616, 425866, 1192178, 2977857]; [n le 9 select I[n] else 9*Self(n-1)-36*Self(n-2)+84*Self(n-3)-126*Self(n-4)+126*Self(n-5)-84*Self(n-6)+36*Self(n-7)-9*Self(n-8)+Self(n-9): n in [1..30]]; // Vincenzo Librandi, May 13 2012
-
Maple
A210768 := proc(n) (n^8 -8*n^7 +36*n^6 -100*n^5 +187*n^4 -244*n^3 +208*n^2 -112*n+32)/16 ; end proc: seq(A210768(n),n=2..20) ;
-
Mathematica
CoefficientList[Series[(1+62*x+315*x^2+877*x^3+872*x^4+351*x^5+ 40*x^6+ 2*x^7)/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, May 13 2012 *)
Formula
a(n) = (n-1)*(n^7-7*n^6+29*n^5-71*n^4+116*n^3-128*n^2+80*n-32)/16.
G.f.: x^2*(1+62*x+315*x^2+877*x^3+872*x^4+351*x^5+40*x^6+2*x^7)/(1-x)^9. [Colin Barker, Apr 01 2012]
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). Vincenzo Librandi, May 13 2012
Comments