cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210699 Number of bilaterally asymmetric 8-hoops with n symbols and no a-rooted trees.

Original entry on oeis.org

1, 71, 918, 6667, 33665, 131616, 425866, 1192178, 2977857, 6785605, 14339006, 28451061, 53519713, 96176822, 166119570, 277155796, 448497281, 706337523, 1085753062, 1632969935, 2408039361, 3487969276, 4970360858, 6977601702, 9661669825, 13209605201, 17849708046
Offset: 2

Views

Author

R. J. Mathar, Mar 30 2012

Keywords

Comments

Follows from the polynomial of eq (29) in the Williamson paper and differs from A210768 (the published version) in a(3) and a(5).

Programs

  • Magma
    I:=[1, 71, 918, 6667, 33665, 131616, 425866, 1192178, 2977857]; [n le 9 select I[n] else 9*Self(n-1)-36*Self(n-2)+84*Self(n-3)-126*Self(n-4)+126*Self(n-5)-84*Self(n-6)+36*Self(n-7)-9*Self(n-8)+Self(n-9):  n in [1..30]]; // Vincenzo Librandi, May 13 2012
  • Maple
    A210768 := proc(n)
       (n^8 -8*n^7 +36*n^6 -100*n^5 +187*n^4 -244*n^3 +208*n^2 -112*n+32)/16 ;
    end proc:
    seq(A210768(n),n=2..20) ;
  • Mathematica
    CoefficientList[Series[(1+62*x+315*x^2+877*x^3+872*x^4+351*x^5+ 40*x^6+ 2*x^7)/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, May 13 2012 *)

Formula

a(n) = (n-1)*(n^7-7*n^6+29*n^5-71*n^4+116*n^3-128*n^2+80*n-32)/16.
G.f.: x^2*(1+62*x+315*x^2+877*x^3+872*x^4+351*x^5+40*x^6+2*x^7)/(1-x)^9. [Colin Barker, Apr 01 2012]
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). Vincenzo Librandi, May 13 2012