A210752 Triangle of coefficients of polynomials v(n,x) jointly generated with A210751; see the Formula section.
1, 2, 3, 3, 8, 8, 4, 15, 27, 21, 5, 24, 61, 86, 55, 6, 35, 114, 227, 265, 144, 7, 48, 190, 484, 799, 798, 377, 8, 63, 293, 905, 1910, 2703, 2362, 987, 9, 80, 427, 1546, 3951, 7150, 8874, 6898, 2584, 10, 99, 596, 2471, 7391, 16188, 25711, 28455, 19929
Offset: 1
Examples
First five rows: 1 2...3 3...8....8 4...15...27...21 5...24...61...86...55 First three polynomials v(n,x): 1, 2 + 3x, 3 + 8x +8x^2
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210751 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210752 *)
Formula
u(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments