cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210795 Triangle of coefficients of polynomials u(n,x) jointly generated with A210796; see the Formula section.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 5, 5, 3, 5, 8, 12, 9, 5, 6, 13, 22, 25, 17, 8, 7, 18, 38, 51, 51, 31, 13, 8, 25, 59, 98, 115, 101, 56, 21, 9, 32, 88, 166, 238, 248, 196, 100, 34, 10, 41, 124, 270, 438, 552, 520, 374, 177, 55, 11, 50, 170, 410, 762, 1090, 1234, 1064, 704
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with n and ends with F(n), where F=A000045 (Fibonacci numbers).
Column 2: A000982
Column 3: A026035
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...1
3...2...2
4...5...5....3
5...8...12...9...5
First three polynomials u(n,x): 1, 2 + x, 3 + 2x + 2x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 0; c = 1; h = 2; p = -1; f = 0;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210795 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210796 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.