A210799 Triangle of coefficients of polynomials u(n,x) jointly generated with A210800; see the Formula section.
1, 3, 1, 5, 4, 2, 11, 13, 9, 3, 17, 32, 32, 17, 5, 35, 77, 96, 72, 32, 8, 53, 164, 254, 243, 153, 59, 13, 107, 353, 641, 739, 579, 313, 107, 21, 161, 704, 1496, 2042, 1938, 1305, 623, 192, 34, 323, 1433, 3440, 5348, 5898, 4774, 2831, 1213, 341, 55, 485
Offset: 1
Examples
First five rows: 1 3....1 5....4....2 11...13...9....3 17...32...32...17...5 First three polynomials u(n,x): 1, 3 + x, 5 + 4x + 2x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c; d[x_] := h + x; e[x_] := p + x; v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f; j = 1; c = 1; h = 2; p = -1; f = 0; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210799 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210800 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k-1) + 3*T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2) + a(k) with a(0) = 2, a(1) = -1, a(k) = 0 if k>1, T(1,0) = T(2,1) = 1, T(2,0) = 3 and T(n,k) = 0 if k<0 or if k>=n.
Comments