A210852 Approximations up to 7^n for one of the three 7-adic integers (-1)^(1/3).
0, 3, 31, 325, 1354, 1354, 34968, 740862, 2387948, 25447152, 146507973, 1276408969, 9185715941, 78392151946, 272170172760, 950393245609, 10445516265495, 43678446835096, 974200502783924, 10744682090246618, 22143577275619761
Offset: 0
Examples
a(3) == 31^7 (mod 7^3) == 27512614111 (mod 343) = 325. a(3) == 3^49 (mod 7^3) = 325. a(3) = 31 + 6*7^2 = 325. a(3) = 3*7^0 + 4*7^1 + 6*7^2 = 325. a(3) = 7^3 +1 - 19 = 325. a(5) = a(4) = 1354 because A212152(4) = 0.
Links
- Kenny Lau, Table of n, a(n) for n = 0..1183
Crossrefs
Programs
-
Maple
a:=proc(n) option remember: if n=0 then 0 elif n=1 then 3 else modp(a(n-1)^7, 7^n) fi end proc: [seq(a(n),n=0..30)];
-
Mathematica
a[n_] := a[n] = Which[n == 0, 0, n == 1, 3, True, Mod[a[n-1]^7, 7^n]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 05 2014, after Maple *)
-
PARI
a(n) = lift((1-sqrt(-3+O(7^n)))/2) \\ Jianing Song, Aug 26 2022
Formula
Recurrence: a(n) = a(n-1)^7 (mod 7^n), n >= 2, a(0)=0, a(1)=3.
a(n) == 3^(7^(n-1)) (mod 7^n) == 3 (mod 7), n >= 1.
a(n+1) = a(n) + A212152(n)*7^n, n >= 1.
a(n+1) = Sum_{k=0..n} A212152(k)*7^k, n >= 1.
a(n-1)^2*a(n) + 1 == 0 (mod 7^(n-1)), n >= 1 (from 3*a(n)^2* A212152(n) + A210853(n) == 0 (mod 7) and the second-to-last formula from above).
a(n) = 7^n + 1 - A212153(n), n >= 1.
Comments