A210853
a(n) = (A210852(n)^3 + 1)/7^n, n >= 0.
Original entry on oeis.org
1, 4, 608, 100082, 1033865, 147695, 363432817, 493771113103, 2362056468993, 408352474516087, 11132773648769182, 1051698129414636470, 55996715400581424222, 4972138747809482684591, 29726859239716779753649, 180817068189496094994710, 34294232575354274959952776, 358207669631705219617812791
Offset: 0
a(0) = 1/1 = 1.
a(3) = (325^3 + 1)/7^3 = 34328126/343 = 100082, (b(3) = 31^7 (mod 7^3) = 325).
-
Join[{1}, MapIndexed[(#^3 + 1)/7^#2[[1]] &, FoldList[PowerMod[#, 7, 7^#2] &, 3, Range[2, 20]]]] (* Paolo Xausa, Jan 14 2025 *)
A023000
a(n) = (7^n - 1)/6.
Original entry on oeis.org
0, 1, 8, 57, 400, 2801, 19608, 137257, 960800, 6725601, 47079208, 329554457, 2306881200, 16148168401, 113037178808, 791260251657, 5538821761600, 38771752331201, 271402266318408, 1899815864228857, 13298711049602000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 17.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- Eric Weisstein's World of Mathematics, Repunit.
- Wikipedia, As I was going to St Ives.
- Index entries for linear recurrences with constant coefficients, signature (8,-7).
-
[n le 2 select n-1 else 8*Self(n-1) - 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012
-
LinearRecurrence[{8, -7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
(7^Range[0,20]-1)/6 (* Harvey P. Dale, Aug 03 2020 *)
-
A023000(n):=floor((7^n-1)/6)$ makelist(A023000(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=(7^n-1)/6; /* Joerg Arndt, May 28 2012 */
-
def a(n): return (7**n-1)//6
[a(n) for n in range(66)] # show terms
# Joerg Arndt, May 28 2012
A212153
Approximations up to 7^n for one of the three 7-adic integers (-1)^(1/3).
Original entry on oeis.org
0, 5, 19, 19, 1048, 15454, 82682, 82682, 3376854, 14906456, 135967277, 700917775, 4655571261, 18496858462, 406052900090, 3797168264335, 22787414304107, 188952067152112, 654213095126526, 654213095126526, 57648689021992241, 456610020510052246, 2132247612759904267
Offset: 0
a(4) == 19^7 (mod 7^4) = 893871739 (mod 2401) = 1048.
a(4) == 5^343 (mod 7^4) = 1048.
a(4) = 19 + 3*7^3 = 1048.
a(4) = 5*7^0 + 2*7^1 + 0*7^2 + 3*7^3 = 1048.
a(4) = 7^4 + 1 - 1354 = 1048.
a(3) = a(2) = 19 because A212155(2) = 0.
Cf.
A212155 (digits of (-1)^(1/3)),
A210852 (approximations of another cube root of -1), 6*
A023000 (approximations of -1).
-
a:=proc(n) option remember: if n=0 then 0 elif n=1 then 5
else modp(a(n-1)^7, 7^n) fi end proc:
-
Join[{0}, FoldList[PowerMod[#, 7, 7^#2] &, 5, Range[2, 25]]] (* Paolo Xausa, Jan 14 2025 *)
-
a(n) = lift((1+sqrt(-3+O(7^n)))/2) \\ Jianing Song, Aug 26 2022
A309450
The successive approximations up to 7^n for 7-adic integer 2^(1/5).
Original entry on oeis.org
0, 4, 46, 95, 1124, 15530, 82758, 435705, 4553420, 27612624, 269734266, 1682110511, 9591417483, 9591417483, 9591417483, 4078929854577, 23069175894349, 122767967603152, 1053290023551980, 9195358013104225, 77588729125343083, 237173261720567085, 1354264989887135099
Offset: 0
a(1) = ( 4)_7 = 4,
a(2) = ( 64)_7 = 46,
a(3) = ( 164)_7 = 95,
a(4) = (3164)_7 = 1124.
Expansions of p-adic integers:
-
A:= op([1,3],padic:-rootp(x^5 -2, 7, 25)):
seq(add(A[i]*10^(i-1),i=1..n),n=0..25); # Robert Israel, Aug 04 2019
-
{a(n) = truncate((2+O(7^n))^(1/5))}
A319097
One of the three successive approximations up to 7^n for 7-adic integer 6^(1/3). This is the 3 (mod 7) case (except for n = 0).
Original entry on oeis.org
0, 3, 24, 122, 808, 10412, 111254, 817148, 1640691, 24699895, 186114323, 186114323, 6118094552, 6118094552, 490563146587, 2525232365134, 26263039914849, 59495970484450, 1222648540420485, 6107889334151832, 74501260446390690, 234085793041614692, 1351177521208182706, 24810103812706111000, 134285093173029776372
Offset: 0
The unique number k in [1, 7^2] and congruent to 3 modulo 7 such that k^3 - 6 is divisible by 7^2 is k = 24, so a(2) = 24.
The unique number k in [1, 7^3] and congruent to 3 modulo 7 such that k^3 - 6 is divisible by 7^3 is k = 122, so a(3) = 122.
Approximations of p-adic cubic roots:
A319098
One of the three successive approximations up to 7^n for 7-adic integer 6^(1/3). This is the 5 (mod 7) case (except for n = 0).
Original entry on oeis.org
0, 5, 40, 138, 824, 3225, 87260, 793154, 793154, 29617159, 191031587, 1320932583, 7252912812, 7252912812, 7252912812, 2041922131359, 16284606661188, 82750467800390, 1013272523749218, 9155340513301463, 31953130884047749, 111745397181659750, 670291261264943757
Offset: 0
The unique number k in [1, 7^2] and congruent to 5 modulo 7 such that k^3 - 6 is divisible by 7^2 is k = 40, so a(2) = 40.
The unique number k in [1, 7^3] and congruent to 5 modulo 7 such that k^3 - 6 is divisible by 7^3 is k = 138, so a(3) = 138.
Approximations of p-adic cubic roots:
A319199
One of the three successive approximations up to 7^n for 7-adic integer 6^(1/3). This is the 6 (mod 7) case (except for n = 0).
Original entry on oeis.org
0, 6, 34, 83, 769, 3170, 36784, 36784, 3330956, 26390160, 187804588, 470279837, 470279837, 83518003043, 180407013450, 180407013450, 23918214563165, 90384075702367, 1020906131651195, 7534560523292991, 53130141264785563, 212714673860009565, 1888352266109861586
Offset: 0
The unique number k in [1, 7^2] and congruent to 6 modulo 7 such that k^3 - 6 is divisible by 7^2 is k = 34, so a(2) = 24.
The unique number k in [1, 7^3] and congruent to 6 modulo 7 such that k^3 - 6 is divisible by 7^3 is k = 83, so a(3) = 122.
Approximations of p-adic cubic roots:
A309451
The successive approximations up to 7^n for 7-adic integer 3^(1/5).
Original entry on oeis.org
0, 5, 26, 75, 1104, 3505, 20312, 20312, 4961570, 28020774, 229788809, 512264058, 2489590801, 71696026806, 71696026806, 71696026806, 19061942066578, 218459525484184, 451090039471391
Offset: 0
a(1) = ( 5)_7 = 5,
a(2) = ( 35)_7 = 26,
a(3) = ( 135)_7 = 75,
a(4) = (3135)_7 = 1104.
Expansions of p-adic integers:
A309452
The successive approximations up to 7^n for 7-adic integer 4^(1/5).
Original entry on oeis.org
0, 2, 9, 107, 450, 450, 67678, 655923, 2303009, 13832611, 54186218, 1749037712, 13612998170, 27454285371, 124343295778, 4193681732872, 18436366262701, 217833949680307, 1380986519616342, 3009400117526791, 3009400117526791, 162593932712750793, 3513869117212454835
Offset: 0
a(1) = ( 2)_7 = 2,
a(2) = ( 12)_7 = 9,
a(3) = ( 212)_7 = 107,
a(4) = (1212)_7 = 450.
Expansions of p-adic integers:
A309453
The successive approximations up to 7^n for 7-adic integer 5^(1/5).
Original entry on oeis.org
0, 3, 45, 339, 1368, 8571, 42185, 630430, 4748145, 27807349, 27807349, 1722658843, 13586619301, 41269193703, 235047214517, 2269716433064, 30755085492722, 230152668910328, 928044210871949, 2556457808782398, 36753143364901827, 196337675960125829, 2430521132293261857
Offset: 0
a(1) = ( 3)_7 = 3,
a(2) = ( 63)_7 = 45,
a(3) = ( 663)_7 = 339,
a(4) = (3663)_7 = 1368.
Expansions of p-adic integers:
Showing 1-10 of 15 results.
Comments