A210860 Triangle of coefficients of polynomials u(n,x) jointly generated with A210861; see the Formula section of A210861.
1, 2, 1, 4, 5, 2, 10, 18, 12, 3, 26, 64, 62, 28, 5, 76, 230, 286, 183, 60, 8, 232, 846, 1298, 1073, 503, 126, 13, 764, 3220, 5832, 5884, 3563, 1288, 255, 21, 2620, 12608, 26436, 31530, 23353, 10956, 3158, 506, 34, 9496, 51084, 121276, 166630
Offset: 1
Examples
First five rows: 1 2 1 4 5 2 10 18 12 3 26 64 62 28 5 First three polynomials u(n,x): 1, 2 + x, 4 + 5x + 2x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210860 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210861 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+n)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
Extensions
Definition clarified by Alonso del Arte and Harvey P. Dale, Dec 17 2012
Comments