A210948 Triangle read by rows: T(n,k) = sum of all parts <= k of all partitions of n.
1, 2, 4, 4, 6, 9, 7, 13, 16, 20, 12, 20, 26, 30, 35, 19, 35, 47, 55, 60, 66, 30, 52, 70, 82, 92, 98, 105, 45, 83, 110, 134, 149, 161, 168, 176, 67, 119, 164, 196, 221, 239, 253, 261, 270, 97, 179, 242, 294, 334, 364, 385, 401, 410, 420
Offset: 1
Examples
Triangle begins: 1; 2, 4; 4, 6, 9; 7, 13, 16, 20; 12, 20, 26, 30, 35; 19, 35, 47, 55, 60, 66; 30, 52, 70, 82, 92, 98, 105; 45, 83, 110, 134, 149, 161, 168, 176; 67, 119, 164, 196, 221, 239, 253, 261, 270;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0): b:= proc(n, i) option remember; local f, g; if n=0 then [1] elif i=1 then [1, n] else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i)); p (p (f, g), [0$i, g[1]*i]) fi end: T:= proc(n, k) option remember; b(n, n)[k+1] +`if`(k<2, 0, T(n, k-1)) end: seq (seq (T(n,k), k=1..n), n=1..12); # Alois P. Heinz, May 02 2012
-
Mathematica
p[f_, g_] := With[{m = Max[Length[f], Length[g]]}, PadRight[f, m, 0] + PadRight[g, m, 0]]; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1}, i == 1, {1, n}, True, f = b[n, i-1]; g = If[i>n, {0}, b[n-i, i]]; p[p[f, g], Append[Array[0&, i], i*g[[1]]]]]]; T[n_, k_] := T[n, k] = b[n, n][[k+1]] + If[k<2, 0, T[n, k-1]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12 }] // Flatten (* Jean-François Alcover, Mar 11 2015, after Alois P. Heinz *)
Formula
T(n,k) = sum_{j=1..k} A138785(n,j).
Comments