cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210968 Smallest prime product p*q*r such that p + q + r = 2*n + 1.

Original entry on oeis.org

12, 20, 28, 63, 44, 52, 117, 68, 76, 171, 92, 207, 345, 116, 124, 279, 465, 148, 333, 164, 172, 387, 188, 423, 705, 212, 477, 795, 236, 244, 549, 915, 268, 603, 284, 292, 657, 1095, 316, 711, 332, 747, 1245, 356, 801, 1335, 1869, 388
Offset: 3

Views

Author

Omar E. Pol, Jun 29 2012

Keywords

Comments

From Robert Israel, May 24 2019: (Start)
If p is an odd prime, then a((p+3)/2) = 4*p.
If p > 2 is in A067774, then a((p+5)/2) = 9*p. (End)

Crossrefs

Programs

  • Maple
    N:= 100: # for a(3)..a(N)
    P:= select(isprime, [2,seq(i,i=3..2*N+1,2)]): nP:= nops(P):
    A:= Vector([infinity$(2*N+1)]):
    for i from 1 to nP while 2*P[i] <= 2*N+1 do
       p:= P[i];
       for j from i to nP while p+P[j] <= 2*N+1 do
         if p*P[j] < A[p+P[j]] then A[p+P[j]]:= p*P[j] fi
    od od:
    B:= Vector([infinity$(2*N+1)]):
    for i from 1 to nP while 3*P[i] <= 2*N+1 do
      p:= P[i];
      for x from 4 to 2*N+1-p do
        y:= p+x;
        if A[x]*p < B[y] then B[y]:= A[x]*p fi
    od od:
    [seq(B[2*i+1],i=3..N)]; # Robert Israel, May 24 2019