A210990 Total area of the shadows of the three views of the shell model of partitions with n regions.
0, 3, 10, 21, 26, 44, 51, 75, 80, 92, 99, 136, 143, 157, 166, 213, 218, 230, 237, 260, 271, 280, 348, 355, 369, 378, 403, 410, 427, 438, 526, 531, 543, 550, 573, 584, 593, 631, 640, 659, 672, 683, 804, 811, 825, 834, 859, 866, 883, 894, 938, 949, 958
Offset: 0
Keywords
Examples
For n = 11 the three views of the shell model of partitions with 11 regions look like this: . . A182181(11) = 35 A182244(11) = 66 . . 6 * * * * * 6 . 3 3 P * * 3 * * 3 . 2 4 a * * * 4 * 2 . 2 2 2 r * 2 * 2 * 2 . 1 5 t * * * * 5 1 . 1 2 3 i * * 3 * 2 1 . 1 1 4 t * * * 4 1 1 . 1 1 2 2 i * 2 * 2 1 1 . 1 1 1 3 o * * 3 1 1 1 . 1 1 1 1 2 n * 2 1 1 1 1 . 1 1 1 1 1 1 s 1 1 1 1 1 1 . <------- Regions ------ ------------> N . L . a 1 . r * 2 . g * * 3 . e * 2 . s * * * 4 . t * * 3 . * * * * 5 . p * 2 . a * * * 4 . r * * 3 . t * * * * * 6 . s . A182727(11) = 35 . The areas of the shadows of the three views are A182244(11) = 66, A182181(11) = 35 and A182727(11) = 35, therefore the total area of the three shadows is 66+35+35 = 136, so a(11) = 136.
Comments