A182181
Total number of parts in the section model of partitions of A135010 with n regions.
Original entry on oeis.org
1, 3, 6, 7, 12, 13, 20, 21, 23, 24, 35, 36, 38, 39, 54, 55, 57, 58, 62, 63, 64, 86, 87, 89, 90, 94, 95, 97, 98, 128, 129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192, 193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275
Offset: 1
The first four regions of the section model of partitions are [1],[2, 1],[3, 1, 1],[2]. We can see that there are seven parts so a(4) = 7.
Written as a triangle begins:
1;
3;
6;
7, 12;
13, 20;
21, 23, 24, 35;
36, 38, 39, 54;
55, 57, 58, 62, 63, 64, 86;
87, 89, 90, 94, 95, 97, 98, 128;
129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192;
193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275;
...
From _Omar E. Pol_, Oct 20 2014: (Start)
Illustration of initial terms:
. _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. _ _ _ |_ _|_ |_ _|_ | |_ _|_ | |_ _|_ | |
. _ _ |_ _ | |_ _ | |_ _ | | |_ _ | | |_ _ | | |
. _ |_ | |_ | | |_ | | |_ | | | |_ | | | |_ | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
. 1 3 6 7 12 13 20
.
. _ _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. |_ _|_ _ _ |_ _|_ _|_ |_ _|_ _|_ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |_ _ _ | |_ _ _ | |
. |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |
. |_ _ | | |_ _ | | |_ _ | | |_ _ | | |
. |_ _|_ | | |_ _|_ | | |_ _|_ | | |_ _|_ | | |
. |_ _ | | | |_ _ | | | |_ _ | | | |_ _ | | | |
. |_ | | | | |_ | | | | |_ | | | | |_ | | | | |
. |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 21 23 24 35
(End)
For the definition of "region" see
A206437.
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
reg = {}; l = {};
For[j = 1, j <= 56, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[reg, j - i];
];
Accumulate@reg (* Robert Price, Apr 22 2020, revised Jul 25 2020 *)
A207380
Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.
Original entry on oeis.org
0, 3, 10, 21, 42, 70, 122, 187, 298, 443, 667, 957, 1401, 1960, 2775, 3828, 5295, 7167, 9745, 12998, 17380, 22915, 30196, 39347, 51274, 66126, 85209, 108942, 139055, 176273, 223148, 280733, 352623, 440646, 549597, 682411, 845852, 1044084, 1286512, 1579582
Offset: 0
For n = 5 the three views of the three-dimensional shell model of partitions with 5 shells look like this:
.
. A066186(5) = 35 A006128(5) = 20
.
. 1 1 1 1 1 5
. 1 1 1 1 1 3 2
. 1 1 1 1 1 4 1
. 1 1 1 1 1 2 2 1
. 1 1 1 1 1 3 1 1
. 1 1 1 1 1 2 1 1 1
. 1 1 1 1 1 1 1 1 1 1
.
.
. 7 6 4 2 1
. 1 2 3 2
. 1 1 2
. 1 1
. 1
.
. A000217(5) = 15
.
The areas of the shadows of the three views are A066186(5) = 35, A006128(5) = 20 and A000217(5) = 15, therefore the total area of the three shadows is 35+20+15 = 70, so a(5) = 70.
Cf.
A000041,
A000217,
A006128,
A026792,
A066186,
A135010,
A138121,
A141285,
A182703,
A182715,
A206437,
A209655.
-
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+g[1]]
fi
end:
a:= n-> n*b(n, n)[1] +b(n, n)[2] +n*(n+1)/2:
seq (a(n), n=0..50); # Alois P. Heinz, Mar 22 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, If [n == 0 || i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; Join[f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]] ]]]; a[n_] := n*b[n, n][[1]] + b[n, n][[2]] + n*(n+1)/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)
A210970
Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.
Original entry on oeis.org
0, 3, 9, 18, 34, 55, 91, 136, 208, 301, 439, 616, 876, 1203, 1665, 2256, 3062, 4083, 5459, 7186, 9470, 12335, 16051, 20688, 26648, 34027, 43395, 54966, 69496, 87341, 109591, 136766, 170382, 211293, 261519, 322382, 396694, 486327, 595143, 725954, 883912
Offset: 0
For n = 6 the illustration of the three views of a three-dimensional version of the shell model of partitions with 6 shells looks like this:
.
. A006128(6) = 35 A006128(6) = 35
.
. 6 6
. 3 3 3 3
. 4 2 4 2
. 2 2 2 2 2 2
. 5 1 5 1
. 3 2 1 3 2 1
. 4 1 1 4 1 1
. 2 2 1 1 2 2 1 1
. 3 1 1 1 3 1 1 1
. 2 1 1 1 1 2 1 1 1 1
. 1 1 1 1 1 1 1 1 1 1 1 1
.
.
. 1 2 5 9 12 6 \
. 1 1 3 5 6 \
. 1 1 2 4 \ 6th slice of
. 1 1 2 / tetrahedron A210961
. 1 1 /
. 1 /
.
. A000217(6) = 21
.
The areas of the shadows of the three views are A006128(6) = 35, A006128(6) = 35 and A000217(6) = 21, therefore the total area of the three shadows is 35+35+21 = 91, so a(6) = 91.
A182244
Sum of all parts of the shell model of partitions of A135010 with n regions.
Original entry on oeis.org
1, 4, 9, 11, 20, 23, 35, 37, 43, 46, 66, 69, 76, 80, 105, 107, 113, 116, 129, 134, 138, 176, 179, 186, 190, 204, 207, 216, 221, 270, 272, 278, 281, 294, 299, 303, 326, 330, 340, 346, 351, 420, 423, 430, 434, 448, 451, 460, 465, 492, 497, 501, 516, 523, 529, 616
Offset: 1
The first four regions of the shell model of partitions are [1],[2, 1],[3, 1, 1],[2], so a(4) = (1)+(2+1)+(3+1+1)+(2) = 11.
Written as a triangle begins:
1;
4;
9;
11, 20;
23, 35;
37, 43, 46, 66;
69, 76, 80,105;
107,113,116,129,134,138,176;
179,186,190,204,207,216,221,270;
272,278,281,294,299,303,326,330,340,346,351,420;
423,430,434,448,451,460,465,492,497,501,516,523,529,616;
...
From _Omar E. Pol_, Aug 08 2013: (Start)
Illustration of initial terms:
. _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. _ _ _ |_ _|_ |_ _|_ | |_ _|_ | |_ _|_ | |
. _ _ |_ _ | |_ _ | |_ _ | | |_ _ | | |_ _ | | |
. _ |_ | |_ | | |_ | | |_ | | | |_ | | | |_ | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
. 1 4 9 11 20 23 35
.
. _ _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. |_ _|_ _ _ |_ _|_ _|_ |_ _|_ _|_ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |_ _ _ | |_ _ _ | |
. |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |
. |_ _ | | |_ _ | | |_ _ | | |_ _ | | |
. |_ _|_ | | |_ _|_ | | |_ _|_ | | |_ _|_ | | |
. |_ _ | | | |_ _ | | | |_ _ | | | |_ _ | | | |
. |_ | | | | |_ | | | | |_ | | | | |_ | | | | |
. |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 37 43 46 66
(End)
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
A186412 = {}; l = {};
For[j = 1, j <= 56, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]];
];
Accumulate@A186412 (* Robert Price, Jul 25 2020 *)
A210979
Total area of the shadows of the three views of the version "Tree" of the shell model of partitions with n shells.
Original entry on oeis.org
0, 3, 8, 15, 27, 42, 69, 102, 155, 225, 327, 458, 652, 894, 1232, 1669, 2257, 2999, 3996, 5242, 6877, 8928, 11564, 14845, 19045, 24223, 30756, 38815, 48877, 61195, 76496, 95124, 118067, 145930, 179991, 221160, 271268, 331538, 404463, 491948, 597253
Offset: 0
For n = 7 the three views of the shell model of partitions version "tree" with seven shells looks like this:
.
. A194805(7) = 25 A006128(7) = 54
.
. 7 7
. 4 4 3
. 5 5 2
. 3 3 2 2
. 6 1 6 1
. 3 1 3 3 1
. 4 1 4 2 1
. 2 1 2 2 2 1
. 1 5 5 1 1
. 1 3 3 2 1 1
. 4 1 4 1 1 1
. 2 1 2 2 1 1 1
. 1 3 3 1 1 1 1
. 2 1 2 1 1 1 1 1
. 1 1 1 1 1 1 1 1
-------------------------------------------------
.
. 6 3 4 2 1 3 5 4 7
. 3 2 2 1 2 2 3
. 2 1 2
. 1
. 1
. 1
. 1
.
. A194803(7) = 23
.
The areas of the shadows of the three views are A006128(7) = 54, A194803(7) = 23 and A194805(7) = 25, therefore the total area of the three shadows is 54+23+25 = 102, so a(7) = 102.
A210980
Total area of the shadows of the three views of the shell model of partitions, version "Tree", with n shells.
Original entry on oeis.org
0, 3, 10, 21, 42, 69, 123, 189, 304, 458, 693, 998, 1474, 2067, 2927, 4056, 5613, 7595, 10335, 13782, 18411, 24276, 31944, 41583, 54152, 69762, 89758, 114668, 146181, 185083, 234051, 294126, 368992, 460669, 573906, 711865, 881506, 1087023, 1338043
Offset: 0
For n = 7 the shadows of the three views of the shell model of partitions version "tree" with seven shells looks like this:
. | Partitions
. A194805(7) = 25 A066186(7) = 105 | of 7
. |
. 1 * * * * * * 1 | 7
. 2 * * * 1 * * 2 | 4+3
. 2 * * * * 1 * 2 | 5+2
. 3 * * 1 * 2 * 3 | 3+2+2
. 1 2 * * * * * 1 2 | 6+1
. 2 3 * * 1 * * 2 3 | 3+3+1
. 2 3 * * * 1 * 2 3 | 4+2+1
. 3 4 * 1 * 2 * 3 4 | 2+2+2+1
. 3 1 * * * * 1 2 3 | 5+1+1
. 4 2 * * 1 * 2 3 4 | 3+2+1+1
. 1 4 * * * 1 2 3 4 | 4+1+1+1
. 2 5 * 1 * 2 3 4 5 | 2+2+1+1+1
. 5 1 * * 1 2 3 4 5 | 3+1+1+1+1
. 1 6 * 1 2 3 4 5 6 | 2+1+1+1+1+1
. 7 1 2 3 4 5 6 7 | 1+1+1+1+1+1+1
. ---------------------------------- |
. |
. * * * * 1 * * * * |
. * * * 1 2 * * * * |
. * 1 * * 2 1 * * * |
. * * 1 2 2 * * 1 * |
. * * * * 2 2 1 * * |
. 1 2 2 3 2 * * * * |
. 2 3 2 2 1 |
. |
. A194804(7) = 59 |
.
Note that, as a variant, in this case each part is labeled with its position in the partition.
The areas of the shadows of the three views are A066186(7) = 105, A194804(7) = 59 and A194805(7) = 25, therefore the total area of the three shadows is 105+59+25 = 189, so a(7) = 189.
A210991
Total area of the shadows of the three views of the shell model of partitions with n regions.
Original entry on oeis.org
0, 3, 9, 18, 21, 35, 39, 58, 61, 67, 71, 99, 103, 110, 115, 152, 155, 161, 165, 175, 181, 186, 238, 242, 249, 254, 265, 269, 277, 283, 352, 355, 361, 365, 375, 381, 386, 401, 406, 415, 422, 428, 522, 526, 533, 538, 549, 553, 561, 567, 584, 590, 595, 606
Offset: 0
For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
. A182181(11) = 35 A210692(11) = 29
.
. 1 1
. 1 1
. 1 1
. 1 1
. 1 1 1 1
. 1 1 1 1
. 1 1 1 1 1 1
. 2 1 1 1 1 2
. 2 1 1 1 1 1 1 2
. 3 2 2 2 1 1 1 1 2 2 3
. 6 3 4 2 5 3 4 2 3 2 1 1 2 3 4 5 6
. <------- Regions ------ ------------> N
. L
. a 1
. r * 2
. g * * 3
. e * 2
. s * * * 4
. t * * 3
. * * * * 5
. p * 2
. a * * * 4
. r * * 3
. t * * * * * 6
. s
.
. A182727(11) = 35
.
The areas of the shadows of the three views are A182181(11) = 35, A182727(11) = 35 and A210692(11) = 29, therefore the total area of the three shadows is 35+35+29 = 99, so a(11) = 99.
Since n = 11 is a partition number A000041 we can see that the rotated structure with 11 regions shows each row as a partition of 6 because A000041(6) = 11. See below:
.
. 6
. 3 3
. 4 2
. 2 2 2
. 5 1
. 3 2 1
. 4 1 1
. 2 2 1 1
. 3 1 1 1
. 2 1 1 1 1
. 1 1 1 1 1 1
.
Cf.
A000041,
A026905,
A135010,
A138121,
A141285,
A182703,
A194446,
A182181,
A182727,
A186114,
A206437,
A210692.
A182727
Sum of largest parts of the shell model of partitions with n regions.
Original entry on oeis.org
1, 3, 6, 8, 12, 15, 20, 22, 26, 29, 35, 38, 43, 47, 54, 56, 60, 63, 69, 74, 78, 86, 89, 94, 98, 105, 108, 114, 119, 128, 130, 134, 137, 143, 148, 152, 160, 164, 171, 177, 182, 192, 195, 200, 204, 211, 214, 220, 225, 234, 239, 243, 251, 258, 264, 275, 277, 281
Offset: 1
For n = 6 the largest parts of the first six regions of the shell model of partitions are 1, 2, 3, 2, 4, 3, so a(6) = 1+2+3+2+4+3 = 15.
Written as a triangle begins:
1;
3;
6;
8, 12;
15, 20;
22, 26, 29, 35;
38, 43, 47, 54;
56, 60, 63, 69, 74, 78, 86;
89, 94, 98,105,108,114,119,128;
130,134,137,143,148,152,160,164,171,177,182,192;
195,200,204,211,214,220,225,234,239,243,251,258,264,275;
Showing 1-8 of 8 results.
Comments