A182181
Total number of parts in the section model of partitions of A135010 with n regions.
Original entry on oeis.org
1, 3, 6, 7, 12, 13, 20, 21, 23, 24, 35, 36, 38, 39, 54, 55, 57, 58, 62, 63, 64, 86, 87, 89, 90, 94, 95, 97, 98, 128, 129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192, 193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275
Offset: 1
The first four regions of the section model of partitions are [1],[2, 1],[3, 1, 1],[2]. We can see that there are seven parts so a(4) = 7.
Written as a triangle begins:
1;
3;
6;
7, 12;
13, 20;
21, 23, 24, 35;
36, 38, 39, 54;
55, 57, 58, 62, 63, 64, 86;
87, 89, 90, 94, 95, 97, 98, 128;
129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192;
193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275;
...
From _Omar E. Pol_, Oct 20 2014: (Start)
Illustration of initial terms:
. _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. _ _ _ |_ _|_ |_ _|_ | |_ _|_ | |_ _|_ | |
. _ _ |_ _ | |_ _ | |_ _ | | |_ _ | | |_ _ | | |
. _ |_ | |_ | | |_ | | |_ | | | |_ | | | |_ | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
. 1 3 6 7 12 13 20
.
. _ _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. |_ _|_ _ _ |_ _|_ _|_ |_ _|_ _|_ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |_ _ _ | |_ _ _ | |
. |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |
. |_ _ | | |_ _ | | |_ _ | | |_ _ | | |
. |_ _|_ | | |_ _|_ | | |_ _|_ | | |_ _|_ | | |
. |_ _ | | | |_ _ | | | |_ _ | | | |_ _ | | | |
. |_ | | | | |_ | | | | |_ | | | | |_ | | | | |
. |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 21 23 24 35
(End)
For the definition of "region" see
A206437.
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
reg = {}; l = {};
For[j = 1, j <= 56, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[reg, j - i];
];
Accumulate@reg (* Robert Price, Apr 22 2020, revised Jul 25 2020 *)
A210990
Total area of the shadows of the three views of the shell model of partitions with n regions.
Original entry on oeis.org
0, 3, 10, 21, 26, 44, 51, 75, 80, 92, 99, 136, 143, 157, 166, 213, 218, 230, 237, 260, 271, 280, 348, 355, 369, 378, 403, 410, 427, 438, 526, 531, 543, 550, 573, 584, 593, 631, 640, 659, 672, 683, 804, 811, 825, 834, 859, 866, 883, 894, 938, 949, 958
Offset: 0
For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
. A182181(11) = 35 A182244(11) = 66
.
. 6 * * * * * 6
. 3 3 P * * 3 * * 3
. 2 4 a * * * 4 * 2
. 2 2 2 r * 2 * 2 * 2
. 1 5 t * * * * 5 1
. 1 2 3 i * * 3 * 2 1
. 1 1 4 t * * * 4 1 1
. 1 1 2 2 i * 2 * 2 1 1
. 1 1 1 3 o * * 3 1 1 1
. 1 1 1 1 2 n * 2 1 1 1 1
. 1 1 1 1 1 1 s 1 1 1 1 1 1
. <------- Regions ------ ------------> N
. L
. a 1
. r * 2
. g * * 3
. e * 2
. s * * * 4
. t * * 3
. * * * * 5
. p * 2
. a * * * 4
. r * * 3
. t * * * * * 6
. s
. A182727(11) = 35
.
The areas of the shadows of the three views are A182244(11) = 66, A182181(11) = 35 and A182727(11) = 35, therefore the total area of the three shadows is 66+35+35 = 136, so a(11) = 136.
A210991
Total area of the shadows of the three views of the shell model of partitions with n regions.
Original entry on oeis.org
0, 3, 9, 18, 21, 35, 39, 58, 61, 67, 71, 99, 103, 110, 115, 152, 155, 161, 165, 175, 181, 186, 238, 242, 249, 254, 265, 269, 277, 283, 352, 355, 361, 365, 375, 381, 386, 401, 406, 415, 422, 428, 522, 526, 533, 538, 549, 553, 561, 567, 584, 590, 595, 606
Offset: 0
For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
. A182181(11) = 35 A210692(11) = 29
.
. 1 1
. 1 1
. 1 1
. 1 1
. 1 1 1 1
. 1 1 1 1
. 1 1 1 1 1 1
. 2 1 1 1 1 2
. 2 1 1 1 1 1 1 2
. 3 2 2 2 1 1 1 1 2 2 3
. 6 3 4 2 5 3 4 2 3 2 1 1 2 3 4 5 6
. <------- Regions ------ ------------> N
. L
. a 1
. r * 2
. g * * 3
. e * 2
. s * * * 4
. t * * 3
. * * * * 5
. p * 2
. a * * * 4
. r * * 3
. t * * * * * 6
. s
.
. A182727(11) = 35
.
The areas of the shadows of the three views are A182181(11) = 35, A182727(11) = 35 and A210692(11) = 29, therefore the total area of the three shadows is 35+35+29 = 99, so a(11) = 99.
Since n = 11 is a partition number A000041 we can see that the rotated structure with 11 regions shows each row as a partition of 6 because A000041(6) = 11. See below:
.
. 6
. 3 3
. 4 2
. 2 2 2
. 5 1
. 3 2 1
. 4 1 1
. 2 2 1 1
. 3 1 1 1
. 2 1 1 1 1
. 1 1 1 1 1 1
.
Cf.
A000041,
A026905,
A135010,
A138121,
A141285,
A182703,
A194446,
A182181,
A182727,
A186114,
A206437,
A210692.
Original entry on oeis.org
1, 4, 7, 12, 15, 20, 24, 31, 34, 39, 43, 50, 53, 59, 64, 75, 78, 83, 89
Offset: 1
Showing 1-4 of 4 results.
Comments