cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182181 Total number of parts in the section model of partitions of A135010 with n regions.

Original entry on oeis.org

1, 3, 6, 7, 12, 13, 20, 21, 23, 24, 35, 36, 38, 39, 54, 55, 57, 58, 62, 63, 64, 86, 87, 89, 90, 94, 95, 97, 98, 128, 129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192, 193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Examples

			The first four regions of the section model of partitions are [1],[2, 1],[3, 1, 1],[2]. We can see that there are seven parts so a(4) = 7.
Written as a triangle begins:
    1;
    3;
    6;
    7,  12;
   13,  20;
   21,  23,  24,  35;
   36,  38,  39,  54;
   55,  57,  58,  62,  63,  64,  86;
   87,  89,  90,  94,  95,  97,  98, 128;
  129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192;
  193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275;
  ...
From _Omar E. Pol_, Oct 20 2014: (Start)
Illustration of initial terms:
.                                                _ _ _ _ _
.                                      _ _ _    |_ _ _    |
.                            _ _ _ _  |_ _ _|_  |_ _ _|_  |
.                    _ _    |_ _    | |_ _    | |_ _    | |
.            _ _ _  |_ _|_  |_ _|_  | |_ _|_  | |_ _|_  | |
.      _ _  |_ _  | |_ _  | |_ _  | | |_ _  | | |_ _  | | |
.  _  |_  | |_  | | |_  | | |_  | | | |_  | | | |_  | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
.  1    3      6       7        12        13         20
.
.                                          _ _ _ _ _ _
.                             _ _ _       |_ _ _      |
.                _ _ _ _     |_ _ _|_     |_ _ _|_    |
.   _ _         |_ _    |    |_ _    |    |_ _    |   |
.  |_ _|_ _ _   |_ _|_ _|_   |_ _|_ _|_   |_ _|_ _|_  |
.  |_ _ _    |  |_ _ _    |  |_ _ _    |  |_ _ _    | |
.  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  | |
.  |_ _    | |  |_ _    | |  |_ _    | |  |_ _    | | |
.  |_ _|_  | |  |_ _|_  | |  |_ _|_  | |  |_ _|_  | | |
.  |_ _  | | |  |_ _  | | |  |_ _  | | |  |_ _  | | | |
.  |_  | | | |  |_  | | | |  |_  | | | |  |_  | | | | |
.  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|_|
.
.       21           23           24            35
(End)
		

Crossrefs

Partial sums of A194446.
Row j has length A187219(j).
Right border gives A006128.
For the definition of "region" see A206437.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    reg = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[reg, j - i];
      ];
    Accumulate@reg  (* Robert Price, Apr 22 2020, revised Jul 25 2020 *)

Formula

a(A000041(n)) = A006128(n), n >= 1.
a(A000041(n)) = A182727(A000041(n)). - Omar E. Pol, May 24 2012

A210990 Total area of the shadows of the three views of the shell model of partitions with n regions.

Original entry on oeis.org

0, 3, 10, 21, 26, 44, 51, 75, 80, 92, 99, 136, 143, 157, 166, 213, 218, 230, 237, 260, 271, 280, 348, 355, 369, 378, 403, 410, 427, 438, 526, 531, 543, 550, 573, 584, 593, 631, 640, 659, 672, 683, 804, 811, 825, 834, 859, 866, 883, 894, 938, 949, 958
Offset: 0

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Comments

Each part is represented by a cuboid of sides 1 X 1 X k where k is the size of the part. For the definition of "regions of n" see A206437.

Examples

			For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
.   A182181(11) = 35            A182244(11) = 66
.
.   6                             * * * * * 6
.   3 3                      P    * * 3 * * 3
.   2   4                    a    * * * 4 * 2
.   2   2 2                  r    * 2 * 2 * 2
.   1       5                t    * * * * 5 1
.   1       2 3              i    * * 3 * 2 1
.   1       1   4            t    * * * 4 1 1
.   1       1   2 2          i    * 2 * 2 1 1
.   1       1   1   3        o    * * 3 1 1 1
.   1       1   1   1 2      n    * 2 1 1 1 1
.   1       1   1   1 1 1    s    1 1 1 1 1 1
. <------- Regions ------         ------------> N
.                            L
.                            a    1
.                            r    * 2
.                            g    * * 3
.                            e    * 2
.                            s    * * * 4
.                            t    * * 3
.                                 * * * * 5
.                            p    * 2
.                            a    * * * 4
.                            r    * * 3
.                            t    * * * * * 6
.                            s
.                               A182727(11) = 35
.
The areas of the shadows of the three views are A182244(11) = 66, A182181(11) = 35 and A182727(11) = 35, therefore the total area of the three shadows is 66+35+35 = 136, so a(11) = 136.
		

Crossrefs

Formula

a(n) = A182244(n) + A182727(n) + A182181(n), n >= 1.
a(A000041(n)) = 2*A006128(n) + A066186(n).

A210991 Total area of the shadows of the three views of the shell model of partitions with n regions.

Original entry on oeis.org

0, 3, 9, 18, 21, 35, 39, 58, 61, 67, 71, 99, 103, 110, 115, 152, 155, 161, 165, 175, 181, 186, 238, 242, 249, 254, 265, 269, 277, 283, 352, 355, 361, 365, 375, 381, 386, 401, 406, 415, 422, 428, 522, 526, 533, 538, 549, 553, 561, 567, 584, 590, 595, 606
Offset: 0

Views

Author

Omar E. Pol, Apr 30 2012

Keywords

Comments

It appears that if n is a partition number A000041 then the rotated structure with n regions shows each row as a partition of k such that A000041(k) = n (see example).
For the definition of "regions of n" see A206437.

Examples

			For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
.     A182181(11) = 35           A210692(11) = 29
.
.   1                                       1
.   1                                       1
.   1                                       1
.   1                                       1
.   1       1                             1 1
.   1       1                             1 1
.   1       1   1                       1 1 1
.   2       1   1                       1 1 2
.   2       1   1   1                 1 1 1 2
.   3   2   2   2   1 1             1 1 2 2 3
.   6 3 4 2 5 3 4 2 3 2 1         1 2 3 4 5 6
. <------- Regions ------         ------------> N
.                            L
.                            a    1
.                            r    * 2
.                            g    * * 3
.                            e    * 2
.                            s    * * * 4
.                            t    * * 3
.                                 * * * * 5
.                            p    * 2
.                            a    * * * 4
.                            r    * * 3
.                            t    * * * * * 6
.                            s
.
.                                A182727(11) = 35
.
The areas of the shadows of the three views are A182181(11) = 35, A182727(11) = 35 and A210692(11) = 29, therefore the total area of the three shadows is 35+35+29 = 99, so a(11) = 99.
Since n = 11 is a partition number A000041 we can see that the rotated structure with 11 regions shows each row as a partition of 6 because A000041(6) = 11. See below:
.
.                      6
.                    3   3
.                  4       2
.                2   2       2
.              5               1
.            3   2               1
.          4       1               1
.        2   2       1               1
.      3       1       1               1
.    2   1       1       1               1
.  1   1   1       1       1               1
.
		

Crossrefs

Formula

a(n) = A182181(n) + A182727(n) + A210692(n).
a(A000041(n)) = 2*A006128(n) + A026905(n).

A182989 Partial sums of A182731.

Original entry on oeis.org

1, 4, 7, 12, 15, 20, 24, 31, 34, 39, 43, 50, 53, 59, 64, 75, 78, 83, 89
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2011

Keywords

Comments

I would like a table for this sequence. Then I would like to see the graphics!

Crossrefs

Showing 1-4 of 4 results.