cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A210692 Number of parts that are visible in one of the three views of the shell model of partitions with n regions mentioned in A210991.

Original entry on oeis.org

1, 3, 6, 6, 11, 11, 18, 18, 18, 18, 29, 29, 29, 29, 44, 44, 44, 44, 44, 44, 44, 66, 66, 66, 66, 66, 66, 66, 66, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 138, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194, 194
Offset: 1

Views

Author

Omar E. Pol, May 24 2012

Keywords

Comments

For the definition of "regions of n" see A206437.

Examples

			Written as a triangle begins:
1,
3,
6,
6, 11,
11,18,
18,18,18,29,
29,29,29,44,
44,44,44,44,44,44,66,
66,66,66,66,66,66,66,96,
96,96,96,96,96,96,96,96,96,96,96,138;
		

Crossrefs

Row j has length A187219(j). Right border gives A026905.

Formula

a(A000041(n)) = A026905(n).

A207380 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 10, 21, 42, 70, 122, 187, 298, 443, 667, 957, 1401, 1960, 2775, 3828, 5295, 7167, 9745, 12998, 17380, 22915, 30196, 39347, 51274, 66126, 85209, 108942, 139055, 176273, 223148, 280733, 352623, 440646, 549597, 682411, 845852, 1044084, 1286512, 1579582
Offset: 0

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

In this model each part of a partition can be represented by a cuboid of size 1 x 1 x L, where L is the size of the part. One of the views is a rectangle formed by ones whose area is n*A000041(n) = A066186(n). Each element of the first view is equal to the volume of a horizontal column parallel to the axis x. The second view is the n-th slice illustrated in A026792 which has A000041(n) levels and its area is A006128(n) equals the total number of parts of all partitions of n and equals the sum of largest parts of all partitions of n. Each zone contains a partition of n. Each element of the second view is equal to the volume of a horizontal column parallel to the axis y. The third view is a triangle because it is also the n-th slice of the tetrahedron of A209655. The area of triangle is A000217(n). Each element of the third view is equal to the volume of a vertical column parallel to the axis z. The sum of elements of each view is A066186(n) equals the area of the first view. For more information about the shell model of partitions see A135010 and A182703.

Examples

			For n = 5 the three views of the three-dimensional shell model of partitions with 5 shells look like this:
.
.   A066186(5) = 35     A006128(5) = 20
.
.         1 1 1 1 1     5
.         1 1 1 1 1     3 2
.         1 1 1 1 1     4 1
.         1 1 1 1 1     2 2 1
.         1 1 1 1 1     3 1 1
.         1 1 1 1 1     2 1 1 1
.         1 1 1 1 1     1 1 1 1 1
.
.
.         7 6 4 2 1
.           1 2 3 2
.             1 1 2
.               1 1
.                 1
.
.   A000217(5) = 15
.
The areas of the shadows of the three views are A066186(5) = 35, A006128(5) = 20 and A000217(5) = 15, therefore the total area of the three shadows is 35+20+15 = 70, so a(5) = 70.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+g[1]]
          fi
        end:
    a:= n-> n*b(n, n)[1] +b(n, n)[2] +n*(n+1)/2:
    seq (a(n), n=0..50);  # Alois P. Heinz, Mar 22 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, If [n == 0 || i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; Join[f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]] ]]]; a[n_] := n*b[n, n][[1]] + b[n, n][[2]] + n*(n+1)/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)

Formula

a(n) = n * A000041(n) + A000217(n) + A006128(n) = A066186(n) + A000217(n) + A006128(n).

Extensions

More terms from Alois P. Heinz, Mar 22 2012

A210970 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 9, 18, 34, 55, 91, 136, 208, 301, 439, 616, 876, 1203, 1665, 2256, 3062, 4083, 5459, 7186, 9470, 12335, 16051, 20688, 26648, 34027, 43395, 54966, 69496, 87341, 109591, 136766, 170382, 211293, 261519, 322382, 396694, 486327, 595143, 725954, 883912
Offset: 0

Views

Author

Omar E. Pol, Apr 22 2012

Keywords

Comments

For more information see A135010 and A182703.

Examples

			For n = 6 the illustration of the three views of a three-dimensional version of the shell model of partitions with 6 shells looks like this:
.
.   A006128(6) = 35     A006128(6) = 35
.
.                 6     6
.               3 3     3 3
.               4 2     4 2
.             2 2 2     2 2 2
.               5 1     5 1
.             3 2 1     3 2 1
.             4 1 1     4 1 1
.           2 2 1 1     2 2 1 1
.           3 1 1 1     3 1 1 1
.         2 1 1 1 1     2 1 1 1 1
.       1 1 1 1 1 1     1 1 1 1 1 1
.
.
.       1 2 5 9 12 6  \
.         1 1 3 5 6    \
.           1 1 2 4     \ 6th slice of
.             1 1 2     / tetrahedron A210961
.               1 1    /
.                 1   /
.
.      A000217(6) = 21
.
The areas of the shadows of the three views are A006128(6) = 35, A006128(6) = 35 and A000217(6) = 21, therefore the total area of the three shadows is 35+35+21 = 91, so a(6) = 91.
		

Crossrefs

Formula

a(n) = 2*A006128(n) + A000217(n).

A210990 Total area of the shadows of the three views of the shell model of partitions with n regions.

Original entry on oeis.org

0, 3, 10, 21, 26, 44, 51, 75, 80, 92, 99, 136, 143, 157, 166, 213, 218, 230, 237, 260, 271, 280, 348, 355, 369, 378, 403, 410, 427, 438, 526, 531, 543, 550, 573, 584, 593, 631, 640, 659, 672, 683, 804, 811, 825, 834, 859, 866, 883, 894, 938, 949, 958
Offset: 0

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Comments

Each part is represented by a cuboid of sides 1 X 1 X k where k is the size of the part. For the definition of "regions of n" see A206437.

Examples

			For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
.   A182181(11) = 35            A182244(11) = 66
.
.   6                             * * * * * 6
.   3 3                      P    * * 3 * * 3
.   2   4                    a    * * * 4 * 2
.   2   2 2                  r    * 2 * 2 * 2
.   1       5                t    * * * * 5 1
.   1       2 3              i    * * 3 * 2 1
.   1       1   4            t    * * * 4 1 1
.   1       1   2 2          i    * 2 * 2 1 1
.   1       1   1   3        o    * * 3 1 1 1
.   1       1   1   1 2      n    * 2 1 1 1 1
.   1       1   1   1 1 1    s    1 1 1 1 1 1
. <------- Regions ------         ------------> N
.                            L
.                            a    1
.                            r    * 2
.                            g    * * 3
.                            e    * 2
.                            s    * * * 4
.                            t    * * 3
.                                 * * * * 5
.                            p    * 2
.                            a    * * * 4
.                            r    * * 3
.                            t    * * * * * 6
.                            s
.                               A182727(11) = 35
.
The areas of the shadows of the three views are A182244(11) = 66, A182181(11) = 35 and A182727(11) = 35, therefore the total area of the three shadows is 66+35+35 = 136, so a(11) = 136.
		

Crossrefs

Formula

a(n) = A182244(n) + A182727(n) + A182181(n), n >= 1.
a(A000041(n)) = 2*A006128(n) + A066186(n).

A210979 Total area of the shadows of the three views of the version "Tree" of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 8, 15, 27, 42, 69, 102, 155, 225, 327, 458, 652, 894, 1232, 1669, 2257, 2999, 3996, 5242, 6877, 8928, 11564, 14845, 19045, 24223, 30756, 38815, 48877, 61195, 76496, 95124, 118067, 145930, 179991, 221160, 271268, 331538, 404463, 491948, 597253
Offset: 0

Views

Author

Omar E. Pol, Apr 28 2012

Keywords

Comments

The physical model shows each part of a partition as an object, for example; a cube of side 1 which is labeled with the size of the part. Note that on the branches of the tree each column contains parts of the same size, as a periodic structure. For the large version of this model see A210980.

Examples

			For n = 7 the three views of the shell model of partitions version "tree" with seven shells looks like this:
.
.         A194805(7) = 25        A006128(7) = 54
.
.                        7       7
.                      4         4 3
.                    5           5 2
.                  3             3 2 2
.        6       1               6 1
.          3     1               3 3 1
.            4   1               4 2 1
.              2 1               2 2 2 1
.                1   5           5 1 1
.                1 3             3 2 1 1
.            4   1               4 1 1 1
.              2 1               2 2 1 1 1
.                1 3             3 1 1 1 1
.              2 1               2 1 1 1 1 1
.                1               1 1 1 1 1 1 1
-------------------------------------------------
.
.        6 3 4 2 1 3 5 4 7
.          3 2 2 1 2 2 3
.              2 1 2
.                1
.                1
.                1
.                1
.
.         A194803(7) = 23
.
The areas of the shadows of the three views are A006128(7) = 54, A194803(7) = 23 and A194805(7) = 25, therefore the total area of the three shadows is 54+23+25 = 102, so a(7) = 102.
		

Crossrefs

Formula

a(n) = A006128(n) + A194803(n) + A194805(n).

A210980 Total area of the shadows of the three views of the shell model of partitions, version "Tree", with n shells.

Original entry on oeis.org

0, 3, 10, 21, 42, 69, 123, 189, 304, 458, 693, 998, 1474, 2067, 2927, 4056, 5613, 7595, 10335, 13782, 18411, 24276, 31944, 41583, 54152, 69762, 89758, 114668, 146181, 185083, 234051, 294126, 368992, 460669, 573906, 711865, 881506, 1087023, 1338043
Offset: 0

Views

Author

Omar E. Pol, Apr 21 2012

Keywords

Comments

Each part is represented by a cuboid 1 X 1 X L where L is the size of the part.

Examples

			For n = 7 the shadows of the three views of the shell model of partitions version "tree" with seven shells looks like this:
.                                        |  Partitions
.    A194805(7) = 25    A066186(7) = 105 |  of 7
.                                        |
.                   1    * * * * * * 1   |  7
.                 2      * * * 1 * * 2   |  4+3
.               2        * * * * 1 * 2   |  5+2
.             3          * * 1 * 2 * 3   |  3+2+2
.   1       2            * * * * * 1 2   |  6+1
.     2     3            * * 1 * * 2 3   |  3+3+1
.       2   3            * * * 1 * 2 3   |  4+2+1
.         3 4            * 1 * 2 * 3 4   |  2+2+2+1
.           3   1        * * * * 1 2 3   |  5+1+1
.           4 2          * * 1 * 2 3 4   |  3+2+1+1
.       1   4            * * * 1 2 3 4   |  4+1+1+1
.         2 5            * 1 * 2 3 4 5   |  2+2+1+1+1
.           5 1          * * 1 2 3 4 5   |  3+1+1+1+1
.         1 6            * 1 2 3 4 5 6   |  2+1+1+1+1+1
.           7            1 2 3 4 5 6 7   |  1+1+1+1+1+1+1
.   ----------------------------------   |
.                                        |
.   * * * * 1 * * * *                    |
.   * * * 1 2 * * * *                    |
.   * 1 * * 2 1 * * *                    |
.   * * 1 2 2 * * 1 *                    |
.   * * * * 2 2 1 * *                    |
.   1 2 2 3 2 * * * *                    |
.           2 3 2 2 1                    |
.                                        |
.    A194804(7) = 59                     |
.
Note that, as a variant, in this case each part is labeled with its position in the partition.
The areas of the shadows of the three views are A066186(7) = 105, A194804(7) = 59 and A194805(7) = 25, therefore the total area of the three shadows is 105+59+25 = 189, so a(7) = 189.
		

Crossrefs

Formula

a(n) = A066186(n) + A194804(n) + A194805(n), n >= 1.
Showing 1-6 of 6 results.