cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211011 Value on the axis "y" of the endpoint of the structure (or curve) of A211000 at n-th stage.

Original entry on oeis.org

0, 1, 0, -1, -2, -3, -4, -5, -6, -7, -6, -5, -4, -3, -2, -1, -2, -3, -4, -5, -6, -7, -6, -5, -4, -3, -4, -5, -4, -3, -2, -1, 0, 1, 0, -1, 0, 1, 2, 3, 2, 1, 0, -1, -2, -3, -2, -1, 0, 1, 0, -1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 7, 6, 5
Offset: 0

Views

Author

Omar E. Pol, Mar 30 2012

Keywords

Comments

For n >= 13 the structure of A211000 looks like essentially a column of tangent circles of radius 1. The structure arises from the prime numbers A000040. The behavior seems to be as modular arithmetic but in a growing structure. Note that all odd numbers > 1 are located on the main axis of the structure. For the number of circles after n-th stage see A211020. For the values on the axis "x" see A211010. For the values for the n-th prime see A211023.

Examples

			Consider the illustration of the structure of A211000:
------------------------------------------------------
.           After           After            After
.  y      9 stages        10 stages        11 stages
------------------------------------------------------
.  2
.  1        1               1                1
.  0      0   2           0   2            0   2
. -1            3               3                3
. -2              4               4                4
. -3            5               5                5
. -4          6               6                6
. -5            7               7               11
. -6              8          10   8           10   8
. -7            9               9                9
. -8
We can see that a(7) = a(11) = -5.
		

Crossrefs

Programs

  • Mathematica
    A211011[nmax_]:=Module[{ep={0,0},angle=3/4Pi,turn=Pi/2},Join[{0},Table[If[!PrimeQ[n],If[n>5&&PrimeQ[n-1],turn*=-1];angle-=turn];Last[ep=AngleVector[ep,{Sqrt[2],angle}]],{n,0,nmax-1}]]];
    A211011[100] (* Paolo Xausa, Jan 14 2023 *)

Formula

abs(a(n)-a(n+1)) = 1.