A211013 Second 13-gonal numbers: a(n) = n*(11*n+9)/2.
0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> n*(11*n+9)/2); # G. C. Greubel, Jul 04 2019
-
Magma
[n*(11*n+9)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
-
Mathematica
Table[n*(11*n+9)/2, {n,0,50}] (* G. C. Greubel, Jul 04 2019 *)
-
PARI
a(n)=n*(11*n+9)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[n*(11*n+9)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
Formula
G.f.: x*(10+x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 10, a(2) = 31. - Philippe Deléham, Mar 27 2013
a(n) = A051865(n) + 9n = A180223(n) + 8n = A022268(n) + 5n = A022269(n) + 4n = A152740(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11n+9). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(20 + 11*x)*exp(x)/2. - G. C. Greubel, Jul 04 2019
Comments