cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211024 Sum of all visible nodes in the structure of A211000 at n-th stage.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 59, 71, 79, 93, 105, 117, 121, 133, 141, 153, 165, 177, 181, 193, 201, 209, 213, 217, 221, 237, 253, 285, 318, 350, 354, 358, 362, 400, 439, 479, 483, 491, 499, 527, 543, 559, 563, 575, 583, 591, 595, 599, 603
Offset: 0

Views

Author

Omar E. Pol, Apr 14 2012

Keywords

Comments

First differs from A000217 at a(11). For n >= 13 the Q-toothpick structure of A211000 looks like essentially a column of tangent circles of radius 1. The structure arises from the prime numbers A000040. The behavior seems to be as modular arithmetic but in a growing structure.

Examples

			Consider the illustration of the nodes in structure of A211000:
-----------------------------------------------------
After 9 stages    After 10 stages    After 11 stages
-----------------------------------------------------
.
.    1                 1                  1
.  0   2             0   2              0   2
.        3                 3                  3
.          4                 4                  4
.        5                 5                  5
.      6                 6                  6
.        7                 7                 11
.          8            10   8             10   8
.        9                 9                  9
.
----------------------------------------------------
We can see that:
a(9)  = 0+1+2+3+4+5+6+7+8+9 = a(8)+9 = 45
a(10) = 0+1+2+3+4+5+6+7+8+9+10 = a(9)+10 = 55
a(11) = 0+1+2+3+4+5+6+8+9+10+11 = a(10)-7+11 = 59
		

Crossrefs

Programs

  • Mathematica
    A211024[nmax_]:=Module[{ep={0,0},node=Association[],angle=3/4Pi,turn=Pi/2},Join[{0},Table[If[!PrimeQ[n],If[n>5&&PrimeQ[n-1],turn*=-1];angle-=turn];ep=AngleVector[ep,{Sqrt[2],angle}];node[ep]=n+1;Total[node],{n,0,nmax-1}]]];
    A211024[100] (* Paolo Xausa, Jan 16 2023 *)