A211029 Triangle read by rows in which row n lists the binary words of length n over the alphabet {1,2} with no initial repeats.
1, 2, 12, 21, 121, 122, 211, 212, 1211, 1221, 1222, 2111, 2112, 2122, 12111, 12112, 12211, 12212, 12221, 12222, 21111, 21112, 21121, 21122, 21221, 21222, 121111, 121112, 121122, 122111, 122112, 122121, 122211, 122212, 122221, 122222, 211111, 211112
Offset: 1
Examples
The fourth row of triangle of binary sequences is 0100, 0110, 0111, 1000, 1001, 1011 (see section example of A122536) therefore the fourth row of this triangle is 1211, 1221, 1222, 2111, 2112, 2122. The first six rows of triangle are: 1, 2; 12, 21; 121, 122, 211, 212; 1211, 1221, 1222, 2111, 2112, 2122; 12111, 12112, 12211, 12212, 12221, 12222, 21111, 21112, 21121, 21122, 21221, 21222; 121111, 121112, 121122, 122111, 122112, 122121, 122211, 122212, 122221, 122222, 211111, 211112, 211121, 211122, 211212, 211221, 211222, 212211, 212221, 212222;
Links
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=0, [[]], map(x-> [[x[], 1], [x[], 2]][], s(n-1))) end: T:= proc(n) map(x-> parse(cat(x[])), select(proc(l) local i; for i to iquo(nops(l), 2) do if l[1..i]=l[i+1..2*i] then return false fi od; true end, s(n)))[] end: seq(T(n), n=1..7); # Alois P. Heinz, Dec 02 2012
Extensions
More terms and name improved by R. J. Mathar, Nov 30 2012
Comments