cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211033 Number of 2 X 2 matrices having all elements in {0,1,...,n} and determinant = 0 (mod 3).

Original entry on oeis.org

1, 10, 33, 152, 297, 528, 1217, 1834, 2673, 4744, 6385, 8448, 13073, 16506, 20625, 29336, 35545, 42768, 57457, 67642, 79233, 102152, 117729, 135168, 168929, 191530, 216513, 264088, 295561, 330000, 394721, 437130, 483153, 568712, 624337, 684288, 794737, 866074
Offset: 0

Views

Author

Clark Kimberling, Mar 30 2012

Keywords

Comments

A211033(n) + 2*A211034(n)=n^4 for n>0. For a guide to related sequences, see A210000.

Crossrefs

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
    v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
    w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
    Table[u[n], {n, 0, z1}]    (* A211033 *)
    Table[v[n], {n, 0, z1}]    (* A211034 *)
    Table[w[n], {n, 0, z1}]    (* A211034 *)
  • Python
    from _future_ import division
    def A211033(n):
        x,y,z = n//3 + 1, (n-1)//3 + 1, (n-2)//3 + 1
        return x**4 + 4*x**3*y + 4*x**3*z + 4*x**2*y**2 + 8*x**2*y*z + 4*x**2*z**2 + y**4 + 6*y**2*z**2 + z**4 # Chai Wah Wu, Nov 28 2016

Formula

From Chai Wah Wu, Nov 28 2016: (Start)
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n > 12.
G.f.: (-x^11 - 7*x^10 - 25*x^9 - 53*x^8 - 91*x^7 - 219*x^6 - 139*x^5 - 109*x^4 - 115*x^3 - 23*x^2 - 9*x - 1)/((x - 1)^5*(x^2 + x + 1)^4).
If r = floor(n/3)+1, s = floor((n-1)/3)+1 and t = floor((n-2)/3)+1, then:
a(n) = r^4 + 4*r^3*s + 4*r^3*t + 4*r^2*s^2 + 8*r^2*s*t + 4*r^2*t^2 + s^4 + 6*s^2*t^2 + t^4.
If n == 0 mod 3, then a(n) = (11*n^4 + 60*n^3 + 138*n^2 + 108*n)/27 + 1.
If n == 1 mod 3, then a(n) = (11*n^4 + 52*n^3 + 96*n^2 + 76*n + 35)/27.
If n == 2 mod 3, then a(n) = 11*(n + 1)^4/27. (End)