A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A211034
Number of 2 X 2 matrices having all elements in {0,1,...,n} and determinant = 1 (mod 3).
Original entry on oeis.org
0, 3, 24, 52, 164, 384, 592, 1131, 1944, 2628, 4128, 6144, 7744, 10955, 15000, 18100, 23988, 31104, 36432, 46179, 57624, 66052, 81056, 98304, 110848, 132723, 157464, 175284, 205860, 240000, 264400, 305723, 351384, 383812, 438144, 497664, 539712, 609531
Offset: 0
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,4,-4,0,-6,6,0,4,-4,0,-1,1).
-
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 0, z1}] (* A211033 *)
Table[v[n], {n, 0, z1}] (* A211034 *)
Table[w[n], {n, 0, z1}] (* A211034 *)
LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {0, 3, 24, 52, 164, 384, 592, 1131, 1944, 2628, 4128, 6144, 7744}, 60] (* Vincenzo Librandi, Nov 29 2016 *)
-
from _future_ import division
def A211034(n):
x,y,z = n//3 + 1, (n-1)//3 + 1, (n-2)//3 + 1
return x**2*y**2 + 2*x**2*y*z + x**2*z**2 + 2*x*y**3 + 6*x*y**2*z + 6*x*y*z**2 + 2*x*z**3 + 2*y**3*z + 2*y*z**3 # Chai Wah Wu, Nov 28 2016
A210698
Number of 2 X 2 matrices having all terms in {1,...,n} and determinant = 0 (mod 3).
Original entry on oeis.org
1, 8, 33, 90, 209, 528, 889, 1432, 2673, 3802, 5297, 8448, 11025, 14216, 20625, 25546, 31393, 42768, 51145, 60824, 79233, 92394, 107297, 135168, 154657, 176392, 216513, 244090, 274481, 330000, 367641, 408728, 483153, 533050, 587089
Offset: 1
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1).
-
a = 1; b = n; z1 = 45;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 1, z1}] (* A210698 *)
Table[v[n], {n, 1, z1}] (* A211071 *)
Table[w[n], {n, 1, z1}] (* A211071 *)
LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {1, 8, 33, 90, 209, 528, 889, 1432, 2673, 3802, 5297, 8448, 11025}, 40] (* Vincenzo Librandi, Dec 01 2016 *)
-
from _future_ import division
def A210698(n):
if n % 3 == 0:
return 11*n**4//27
elif n % 3 == 1:
return (11*n**4 - 8*n**3 + 6*n**2 + 4*n + 14)//27
else:
return (11*n**4 - 16*n**3 + 24*n**2 + 32*n + 8)//27 # Chai Wah Wu, Nov 30 2016
Showing 1-3 of 3 results.
Comments