A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A211033
Number of 2 X 2 matrices having all elements in {0,1,...,n} and determinant = 0 (mod 3).
Original entry on oeis.org
1, 10, 33, 152, 297, 528, 1217, 1834, 2673, 4744, 6385, 8448, 13073, 16506, 20625, 29336, 35545, 42768, 57457, 67642, 79233, 102152, 117729, 135168, 168929, 191530, 216513, 264088, 295561, 330000, 394721, 437130, 483153, 568712, 624337, 684288, 794737, 866074
Offset: 0
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,4,-4,0,-6,6,0,4,-4,0,-1,1).
-
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 0, z1}] (* A211033 *)
Table[v[n], {n, 0, z1}] (* A211034 *)
Table[w[n], {n, 0, z1}] (* A211034 *)
-
from _future_ import division
def A211033(n):
x,y,z = n//3 + 1, (n-1)//3 + 1, (n-2)//3 + 1
return x**4 + 4*x**3*y + 4*x**3*z + 4*x**2*y**2 + 8*x**2*y*z + 4*x**2*z**2 + y**4 + 6*y**2*z**2 + z**4 # Chai Wah Wu, Nov 28 2016
A211071
Number of 2 X 2 matrices having all terms in {1,...,n} and determinant = 1 (mod 3).
Original entry on oeis.org
0, 4, 24, 83, 208, 384, 756, 1332, 1944, 3099, 4672, 6144, 8768, 12100, 15000, 19995, 26064, 31104, 39588, 49588, 57624, 70931, 86272, 98304, 117984, 140292, 157464, 185283, 216400, 240000, 277940, 319924, 351384, 401643, 456768
Offset: 1
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1).
-
a = 1; b = n; z1 = 45;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 1, z1}] (* A210698 *)
Table[v[n], {n, 1, z1}] (* A211071 *)
Table[w[n], {n, 1, z1}] (* A211071 *)
LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {0, 4, 24, 83, 208, 384, 756, 1332, 1944, 3099, 4672, 6144, 8768}, 40] (* Vincenzo Librandi, Dec 01 2016 *)
-
from _future_ import division
def A211071(n):
if n % 3 == 0:
return 8*n**4//27
elif n % 3 == 1:
return (8*n**4 + 4*n**3 - 3*n**2 - 2*n - 7)//27
else:
return (8*n**4 + 8*n**3 - 12*n**2 - 16*n - 4)//27 # Chai Wah Wu, Nov 30 2016
Showing 1-3 of 3 results.
Comments