A211064 Number of 2 X 2 matrices having all terms in {1,...,n} and even determinant.
1, 10, 41, 160, 337, 810, 1345, 2560, 3761, 6250, 8521, 12960, 16801, 24010, 30017, 40960, 49825, 65610, 78121, 100000, 117041, 146410, 168961, 207360, 236497, 285610, 322505, 384160, 430081, 506250, 562561, 655360, 723521, 835210
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A210000.
Programs
-
Mathematica
a = 1; b = n; z1 = 35; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}] v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}] Table[u[n], {n, 1, z1}] (* A211064 *) Table[v[n], {n, 1, z1}] (* A211065 *)
Formula
a(n) + A211065(n) = n^4.
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = n^4 - (2*n + 1 -(-1)^n)^2*(6*n + 1 -(-1)^n)*(2*n - 1 + (-1)^n)/128.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(-x^7 - 9*x^6 - 51*x^5 - 59*x^4 - 83*x^3 - 27*x^2 - 9*x - 1)/((x - 1)^5*(x + 1)^4). (End)
Comments