A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A211065
Number of 2 X 2 matrices having all terms in {1,...,n} and odd determinant.
Original entry on oeis.org
0, 6, 40, 96, 288, 486, 1056, 1536, 2800, 3750, 6120, 7776, 11760, 14406, 20608, 24576, 33696, 39366, 52200, 60000, 77440, 87846, 110880, 124416, 154128, 171366, 208936, 230496, 277200, 303750, 360960, 393216, 462400, 501126, 583848
Offset: 1
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 1, z1}] (* A211064 *)
Table[v[n], {n, 1, z1}] (* A211065 *)
A211066
Number of 2 X 2 matrices having all terms in {1,...,n} and nonnegative even determinant.
Original entry on oeis.org
1, 8, 28, 96, 193, 448, 728, 1360, 1985, 3264, 4420, 6696, 8641, 12296, 15360, 20896, 25361, 33344, 39636, 50680, 59289, 74056, 85376, 104728, 119377, 144032, 162588, 193568, 216585, 254880, 283096, 329656, 363881, 419856, 460804
Offset: 1
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 1, z1}] (* A211066 *)
Table[v[n], {n, 1, z1}] (* A211067 *)
Table[w[n], {n, 1, z1}] (* A211068 *)
A211067
Number of 2 X 2 matrices having all terms in {1,...,n} and positive even determinant.
Original entry on oeis.org
0, 2, 13, 64, 144, 362, 617, 1200, 1776, 2986, 4101, 6264, 8160, 11714, 14657, 20064, 24464, 32266, 38485, 49320, 57752, 72354, 83585, 102632, 117120, 141578, 159917, 190592, 213496, 251370, 279465, 325704, 359640, 415354, 455973
Offset: 1
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 1, z1}] (* A211066 *)
Table[v[n], {n, 1, z1}] (* A211067 *)
Table[w[n], {n, 1, z1}] (* A211068 *)
Showing 1-4 of 4 results.
Comments