A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A211064
Number of 2 X 2 matrices having all terms in {1,...,n} and even determinant.
Original entry on oeis.org
1, 10, 41, 160, 337, 810, 1345, 2560, 3761, 6250, 8521, 12960, 16801, 24010, 30017, 40960, 49825, 65610, 78121, 100000, 117041, 146410, 168961, 207360, 236497, 285610, 322505, 384160, 430081, 506250, 562561, 655360, 723521, 835210
Offset: 1
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 1, z1}] (* A211064 *)
Table[v[n], {n, 1, z1}] (* A211065 *)
A211068
Number of 2 X 2 matrices having all terms in {1,...,n} and positive odd determinant.
Original entry on oeis.org
0, 3, 20, 48, 144, 243, 528, 768, 1400, 1875, 3060, 3888, 5880, 7203, 10304, 12288, 16848, 19683, 26100, 30000, 38720, 43923, 55440, 62208, 77064, 85683, 104468, 115248, 138600, 151875, 180480, 196608, 231200, 250563, 291924
Offset: 1
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
-
[(2*n+1-(-1)^n)^2*(6*n+1-(-1)^n)*(2*n-1+(-1)^n)/256: n in [1..40]]; // Vincenzo Librandi, Nov 28 2016
-
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 1, z1}] (* A211066 *)
Table[v[n], {n, 1, z1}] (* A211067 *)
Table[w[n], {n, 1, z1}] (* A211068 *)
LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 3, 20, 48, 144, 243, 528, 768, 1400}, 50] (* Vincenzo Librandi, Nov 28 2016 *)
Showing 1-3 of 3 results.
Comments