A211065 Number of 2 X 2 matrices having all terms in {1,...,n} and odd determinant.
0, 6, 40, 96, 288, 486, 1056, 1536, 2800, 3750, 6120, 7776, 11760, 14406, 20608, 24576, 33696, 39366, 52200, 60000, 77440, 87846, 110880, 124416, 154128, 171366, 208936, 230496, 277200, 303750, 360960, 393216, 462400, 501126, 583848
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A210000.
Programs
-
Mathematica
a = 1; b = n; z1 = 35; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}] v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}] Table[u[n], {n, 1, z1}] (* A211064 *) Table[v[n], {n, 1, z1}] (* A211065 *)
Formula
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = (2*n + 1 -(-1)^n)^2*(6*n + 1 -(-1)^n)*(2*n - 1 + (-1)^n)/128.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: -2*x^2*(3*x^5 + 5*x^4 + 28*x^3 + 16*x^2 + 17*x + 3)/((x - 1)^5*(x + 1)^4).
(End)
Comments