A211068 Number of 2 X 2 matrices having all terms in {1,...,n} and positive odd determinant.
0, 3, 20, 48, 144, 243, 528, 768, 1400, 1875, 3060, 3888, 5880, 7203, 10304, 12288, 16848, 19683, 26100, 30000, 38720, 43923, 55440, 62208, 77064, 85683, 104468, 115248, 138600, 151875, 180480, 196608, 231200, 250563, 291924
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Crossrefs
Cf. A210000.
Programs
-
Magma
[(2*n+1-(-1)^n)^2*(6*n+1-(-1)^n)*(2*n-1+(-1)^n)/256: n in [1..40]]; // Vincenzo Librandi, Nov 28 2016
-
Mathematica
a = 1; b = n; z1 = 35; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}] v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}] w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}] Table[u[n], {n, 1, z1}] (* A211066 *) Table[v[n], {n, 1, z1}] (* A211067 *) Table[w[n], {n, 1, z1}] (* A211068 *) LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 3, 20, 48, 144, 243, 528, 768, 1400}, 50] (* Vincenzo Librandi, Nov 28 2016 *)
Formula
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = A211065(n)/2.
a(n) = (2*n + 1 -(-1)^n)^2*(6*n + 1 -(-1)^n)*(2*n - 1 + (-1)^n)/256.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: -x^2*(3*x^5 + 5*x^4 + 28*x^3 + 16*x^2 + 17*x + 3)/((x - 1)^5*(x + 1)^4). (End)
Comments