A211098 Length of largest (i.e., leftmost) Lyndon word in Lyndon factorization of binary vectors of lengths 1, 2, 3, ...
1, 1, 1, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 4, 3, 4, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 5, 3, 5, 4, 5, 2, 2, 2, 5, 3, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 6, 4, 6, 5, 6, 3, 3, 5, 6, 4, 6, 5, 6, 2, 2, 2, 2, 2, 2, 5, 6, 3, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
Here are the Lyndon factorizations of the first few binary vectors: .0. .1. .0.0. .01. .1.0. .1.1. .0.0.0. .001. .01.0. .011. .1.0.0. .1.01. .1.1.0. .1.1.1. .0.0.0.0. ...
References
- M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983. See Theorem 5.1.5, p. 67.
- G. Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42
Links
- N. J. A. Sloane, Maple programs for A211097 etc.
Comments