A211144 Smallest number k such that the sum of the distinct prime divisors of k equals n times a nontrivial integer power.
14, 15, 35, 39, 51, 95, 115, 87, 155, 111, 123, 215, 235, 159, 371, 183, 302, 335, 219, 471, 395, 415, 267, 623, 291, 303, 482, 327, 339, 791, 554, 1255, 635, 655, 411, 695, 662, 447, 698, 471, 734, 815, 835, 519, 1211, 543, 842, 1895, 579, 591, 914, 2167
Offset: 1
Keywords
Examples
a(20) = 471 = 3*157, since the sum of the distinct prime divisors is 160 = 20*2^3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with (numtheory): sopf:= proc(n) option remember; add(i, i=factorset(n)) end: a:= proc(n) local k, q; for k while irem(sopf(k), n, 'q')>0 or igcd (map(i->i[2], ifactors(q)[2])[])<2 do od; k end: seq (a(n), n=1..100);
Comments