cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211154 Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and even determinant.

Original entry on oeis.org

1, 41, 457, 1345, 4481, 8521, 18985, 30017, 54721, 78121, 126281, 168961, 252097, 322505, 454441, 562561, 759425, 916777, 1197001, 1416641, 1800961, 2097481, 2608937, 2998465, 3662401, 4162601, 5006665, 5636737, 6690881, 7471561, 8768041, 9721601, 11294977, 12445225, 14332361, 15704641
Offset: 0

Views

Author

Clark Kimberling, Apr 05 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Programs

  • Maple
    seq((2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n), n=1..20); # Mark van Hoeij, May 13 2013
  • Mathematica
    a = -n; b = n; z1 = 20;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
    v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
    Table[u[n], {n, 1, z1}] (* A211154 *)
    Table[v[n], {n, 1, z1}] (* A211155 *)
  • PARI
    a(n)=(2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n); \\ Joerg Arndt, May 14 2013

Formula

a(n) + A211155(n) = (2n+1)^4.
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(-x^8 - 36*x^6 - 416*x^5 - 734*x^4 - 1472*x^3 - 724*x^2 - 416*x - 41)/((x - 1)^5*(x + 1)^4). (End)

Extensions

More terms from Joerg Arndt, May 14 2013
a(0)=1 prepended by Andrew Howroyd, May 05 2020