A211154 Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and even determinant.
1, 41, 457, 1345, 4481, 8521, 18985, 30017, 54721, 78121, 126281, 168961, 252097, 322505, 454441, 562561, 759425, 916777, 1197001, 1416641, 1800961, 2097481, 2608937, 2998465, 3662401, 4162601, 5006665, 5636737, 6690881, 7471561, 8768041, 9721601, 11294977, 12445225, 14332361, 15704641
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Programs
-
Maple
seq((2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n), n=1..20); # Mark van Hoeij, May 13 2013
-
Mathematica
a = -n; b = n; z1 = 20; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}] v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}] Table[u[n], {n, 1, z1}] (* A211154 *) Table[v[n], {n, 1, z1}] (* A211155 *)
-
PARI
a(n)=(2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n); \\ Joerg Arndt, May 14 2013
Formula
a(n) + A211155(n) = (2n+1)^4.
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(-x^8 - 36*x^6 - 416*x^5 - 734*x^4 - 1472*x^3 - 724*x^2 - 416*x - 41)/((x - 1)^5*(x + 1)^4). (End)
Extensions
More terms from Joerg Arndt, May 14 2013
a(0)=1 prepended by Andrew Howroyd, May 05 2020
Comments