A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A211156
Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and even nonnegative determinant.
Original entry on oeis.org
37, 293, 817, 2513, 4677, 10149, 15873, 28545, 40581, 65093, 86769, 128977, 164581, 231173, 285953, 385153, 464357, 605477, 715889, 909201, 1058501, 1315237, 1510721, 1844289, 2095429
Offset: 1
-
a = -n; b = n; z1 = 25;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, 2*n^2}]
u1 = Table[u[n], {n, 1, z1}] (* A211156 *)
v1 = Table[v[n], {n, 1, z1}] (* A211157 *)
w1 = Table[w[n], {n, 1, z1}] (* A211158 *)
(u1 - 1)/4 (* integers *)
v1/4 (* integers *)
w1/4 (* integers *)
A211157
Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and positive even determinant.
Original entry on oeis.org
4, 164, 528, 1968, 3844, 8836, 14144, 26176, 37540, 61188, 82192, 123120, 157924, 223268, 276608, 374272, 452420, 591524, 700752, 891760, 1038980, 1293700, 1487744, 1818112, 2067172
Offset: 1
-
a = -n; b = n; z1 = 25;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, 2*n^2}]
u1 = Table[u[n], {n, 1, z1}] (* A211156 *)
v1 = Table[v[n], {n, 1, z1}] (* A211157 *)
w1 = Table[w[n], {n, 1, z1}] (* A211158 *)
(u1 - 1)/4 (* integers *)
v1/4 (* integers *)
w1/4 (* integers *)
Showing 1-3 of 3 results.
Comments