A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A211156
Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and even nonnegative determinant.
Original entry on oeis.org
37, 293, 817, 2513, 4677, 10149, 15873, 28545, 40581, 65093, 86769, 128977, 164581, 231173, 285953, 385153, 464357, 605477, 715889, 909201, 1058501, 1315237, 1510721, 1844289, 2095429
Offset: 1
-
a = -n; b = n; z1 = 25;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, 2*n^2}]
u1 = Table[u[n], {n, 1, z1}] (* A211156 *)
v1 = Table[v[n], {n, 1, z1}] (* A211157 *)
w1 = Table[w[n], {n, 1, z1}] (* A211158 *)
(u1 - 1)/4 (* integers *)
v1/4 (* integers *)
w1/4 (* integers *)
A211158
Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and positive odd determinant.
Original entry on oeis.org
20, 84, 528, 1040, 3060, 4788, 10304, 14400, 26100, 34100, 55440, 69264, 104468, 126420, 180480, 213248, 291924, 338580, 448400, 512400, 660660, 745844, 940608, 1051200, 1301300, 1441908, 1756944, 1932560, 2322900, 2538900, 3015680, 3277824, 3852948, 4167380
Offset: 1
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
-
[n*(n+1)*(3*n+1+3*n^2-(-1)^n*(2*n+1)): n in [1..35]]; // Vincenzo Librandi, Dec 14 2016
-
a = -n; b = n; z1 = 25;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, 2*n^2}]
u1 = Table[u[n], {n, 1, z1}] (* A211156 *)
v1 = Table[v[n], {n, 1, z1}] (* A211157 *)
w1 = Table[w[n], {n, 1, z1}] (* A211158 *)
(u1 - 1)/4 (* integers *)
v1/4 (* integers *)
w1/4 (* integers *)
Table[n*(n+1)*(3*n+1+3*n^2-(-1)^n*(2*n+1)),{n,35}] (* Vincenzo Librandi, Dec 14 2016 *)
CoefficientList[ Series[-(( 4(5 + 16x + 91x^2 + 64x^3 + 91x^4 + 16x^5 + 5x^6))/((x -1)^5 (x +1)^4)), {x, 0, 35}], x] (* or *)
LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {20, 84, 528, 1040, 3060, 4788, 10304, 14400, 26100}, 36] (* Robert G. Wilson v, Dec 14 2016 *)
-
def A211158(n):
return n*(n+1)*(3*n+1+3*n**2-(-1)**n*(2*n+1)) # Chai Wah Wu, Dec 13 2016
Showing 1-3 of 3 results.
Comments