A211177 Numerator of Sum_{k=1..n}(-1)^k/phi(k), where phi = A000010.
-1, 0, -1, 0, -1, 1, 1, 1, 1, 5, 19, 17, 29, 13, 21, 13, 47, 181, 503, 593, 533, 121, 1259, 1457, 6889, 7549, 7109, 7769, 52403, 59333, 11497, 6095, 29089, 61643, 59333, 63953, 62413, 7277, 21061, 2777, 10877, 11647, 3809, 3963, 1438, 271, 3064, 51439, 7217, 7493
Offset: 1
Examples
Fractions begin with -1, 0, -1/2, 0, -1/4, 1/4, 1/12, 1/3, 1/6, 5/12, 19/60, 17/30, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Olivier Bordellès and Benoit Cloitre, An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions, J. Int. Seq., Vol. 16 (2013) Article 13.6.3.
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
Programs
-
Mathematica
Numerator @ Accumulate[Table[(-1)^k/EulerPhi[k], {k, 1, 50}]] (* Amiram Eldar, Nov 20 2020 *)
-
PARI
a(n)=numerator(sum(k=1,n,(-1)^k/eulerphi(k)))
Formula
a(n)/A211178(n) = c*log(n) + O(1) with a suitable constant c (see ref).
The constant above is c = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 20 2020
More accurately, a(n)/A211178(n) ~ (A/3) * (log(n) + gamma - B - 8*log(2)/3) + O(log(n)^(5/3)/n), where A = zeta(2)*zeta(3)/zeta(6) (A082695), gamma is Euler's constant (A001620), and B = Sum_{p prime} log(p)/(p^2-p+1) (A085609) (Bordellès and Cloitre, 2013; Tóth, 2017). - Amiram Eldar, Oct 14 2022
Extensions
More terms from Amiram Eldar, Nov 20 2020