cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211177 Numerator of Sum_{k=1..n}(-1)^k/phi(k), where phi = A000010.

Original entry on oeis.org

-1, 0, -1, 0, -1, 1, 1, 1, 1, 5, 19, 17, 29, 13, 21, 13, 47, 181, 503, 593, 533, 121, 1259, 1457, 6889, 7549, 7109, 7769, 52403, 59333, 11497, 6095, 29089, 61643, 59333, 63953, 62413, 7277, 21061, 2777, 10877, 11647, 3809, 3963, 1438, 271, 3064, 51439, 7217, 7493
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2013

Keywords

Examples

			Fractions begin with -1, 0, -1/2, 0, -1/4, 1/4, 1/12, 1/3, 1/6, 5/12, 19/60, 17/30, ...
		

Crossrefs

Cf. A000010, A028415, A211178 (denominators).

Programs

  • Mathematica
    Numerator @ Accumulate[Table[(-1)^k/EulerPhi[k], {k, 1, 50}]] (* Amiram Eldar, Nov 20 2020 *)
  • PARI
    a(n)=numerator(sum(k=1,n,(-1)^k/eulerphi(k)))

Formula

a(n)/A211178(n) = c*log(n) + O(1) with a suitable constant c (see ref).
The constant above is c = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 20 2020
More accurately, a(n)/A211178(n) ~ (A/3) * (log(n) + gamma - B - 8*log(2)/3) + O(log(n)^(5/3)/n), where A = zeta(2)*zeta(3)/zeta(6) (A082695), gamma is Euler's constant (A001620), and B = Sum_{p prime} log(p)/(p^2-p+1) (A085609) (Bordellès and Cloitre, 2013; Tóth, 2017). - Amiram Eldar, Oct 14 2022

Extensions

More terms from Amiram Eldar, Nov 20 2020