A211193 E.g.f.: exp((1+x)^(1+x)-1).
1, 1, 3, 10, 45, 221, 1315, 8324, 60809, 464113, 3993811, 35342814, 349085869, 3486862653, 38870528411, 429139127416, 5345350992113, 63994963427393, 887692696733827, 11284513262684914, 175285847038616301, 2298693217837384957, 40805829165456572691
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
egf:= exp((1+x)^(1+x)-1); a:= n-> n!*coeff(series(egf, x, n+1), x, n): seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013 # second program: uses Lehmer-Comtet A008296. A211193:= n-> add(combinat[bell](k)*A008296(n, k), k=1..n): A211193(0):=1: seq(A211193(n), n=0..15); # Mélika Tebni, Aug 22 2021
-
Mathematica
Range[0, 22]! CoefficientList[ Series[ Exp[(1 + x)^(1 + x)], {x, 0, 22}], x]/E
-
PARI
x='x+O('x^66); Vec(serlaplace(exp((1+x)^(1+x)-1))) \\ Joerg Arndt, Nov 30 2014
Formula
E.g.f.: exp((1+x)^(1+x)-1).
a(n) ~ (n-2)! if n is even and a(n) ~ -(n-2)! if n is odd. - Vaclav Kotesovec, Feb 13 2013
a(n) = Sum_{k=1..n} Bell(k)*A008296(n, k) for n >= 1. - Mélika Tebni, Aug 22 2021
Comments