cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211219 Maximum value of sigma(x) * sigma(y) * sigma(z), where x + y + z = n.

Original entry on oeis.org

1, 3, 9, 27, 36, 63, 84, 147, 196, 343, 336, 588, 576, 1008, 864, 1728, 1152, 2160, 1872, 2700, 2340, 4032, 2925, 5040, 4368, 6300, 5460, 9408, 6552, 11760, 10192, 14112, 10080, 21952, 12096, 18816, 18816, 24304, 16128, 30576, 20832, 32928, 26208, 33852
Offset: 3

Views

Author

Paolo P. Lava, Apr 05 2012

Keywords

Examples

			For n=79 the maximum product is reached when 24, 27 and 28 (24+27+28=79) are considered: sigma(24)*sigma(27)*sigma(28) = 60*40*56 = 134400.
For n=83 the maximum product is reached when 24, 24 and 35 (24+24+35=83) are considered: sigma(24)*sigma(24)*sigma(35) = 60*60*48 = 172800.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A211219:=proc(i)
    local a,b,c,d,m,n,s;
    for n from 3 to i do
      s:=0; a:=0; b:=0; c:=n;
      while a<=floor(n/3) do
        while b<=floor((n-a)/2) do
          for m from 1 to 3 do d:=sigma(a)*sigma(b)*sigma(c); od;
          if d>s then s:=d; fi; b:=b+1; c:=c-1;
        od;
        a:=a+1; b:=a; c:=n-a-b;
      od;
      print(s);
    od; end:
    A211219(1000);
  • Mathematica
    a[n_] := Max[Times @@ DivisorSigma[1, #]& /@ IntegerPartitions[n, {3}]]; Table[a[n], {n, 3, 100}] (* Jean-François Alcover, Dec 26 2013 *)

A211217 Maximum of sigma(x) * sigma(y), where x + y = n.

Original entry on oeis.org

1, 3, 9, 12, 21, 28, 49, 48, 84, 72, 144, 96, 180, 156, 225, 195, 336, 234, 420, 364, 504, 360, 784, 432, 672, 672, 868, 576, 1092, 744, 1176, 936, 1209, 1008, 1680, 992, 1638, 1440, 1860, 1344, 2340, 1344, 2520, 1920, 2232, 1680, 3600, 1860, 3024, 2400
Offset: 2

Views

Author

Paolo P. Lava, Apr 05 2012

Keywords

Examples

			For n=83 the maximum product is reached when 35 and 48 (35+48=83) are considered: sigma(35)*sigma(48) = 48*124 = 5952.
For n=99 the maximum product is reached when 36 and 63 (36+63=99) are considered: sigma(36)*sigma(63) = 91*104 = 9464.
		

Crossrefs

Programs

  • Maple
    with(combstruct); with(numtheory);
    A211217:=proc(i)
    local a,b,j,n,t;
    for n from 2 to i do
      t:=0;
      for j from 0 to floor(n/2) do
        a:=n-j; b:=sigma(j)*sigma(a); if b>t then t:=b; fi;
      od;
      print(t);
    od; end:
    A211217(1000);
  • Mathematica
    a[n_] := Max[Times @@ DivisorSigma[1, #]& /@ IntegerPartitions[n, {2}]]; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Dec 26 2013 *)

A211221 For any partition of n consider the product of the sigma of each element. Sequence gives the maximum of such values.

Original entry on oeis.org

1, 3, 4, 9, 12, 27, 36, 81, 108, 243, 324, 729, 972, 2187, 2916, 6561, 8748, 19683, 26244, 59049, 78732, 177147, 236196, 531441, 708588, 1594323, 2125764, 4782969, 6377292, 14348907, 19131876, 43046721, 57395628, 129140163, 172186884, 387420489, 516560652
Offset: 1

Views

Author

Paolo P. Lava, Apr 13 2012

Keywords

Examples

			For n=21 the partition (2,2,2,2,2,2,2,2,2,3) gives sigma(2)^9*sigma(3)=3^9*4=78732 that is the maximum value that can be reached.
		

Crossrefs

Programs

  • Maple
    with(numtheory); with(combinat);
    A211221:=proc(q)
    local b,c,i,j,k,m,n,t;
    for n from 1 to q do
      k:=partition(n); b:=numbpart(n); m:=0;
      for i from 1 to b do
        c:=nops(k[i]); t:=1;
        for j from 1 to c do t:=t*sigma(k[i][j]); od; if t>m then m:=t; fi; od;
      print(m);
    od; end:
    A211221(100)
  • Mathematica
    LinearRecurrence[{0,3},{1,3,4},40] (* Harvey P. Dale, Jun 06 2015 *)

Formula

For n>1, a(n) = 3^n/2 for n even and a(n) = 4*3^(n-3)/2 for n odd.
For n>3, a(n) = 3*a(n-2). G.f.: x*(1+3*x+x^2)/(1-3*x^2). [Colin Barker, Apr 18 2012]
Closed form: a(1)=1, then a(n) = 1/6*(7-(-1)^(n-2))*3^(1/4*(-1)^(n-2))*3^(1/2*(n-2))*27^(1/4) = 3^((2*n+(-1)^n-5)/4)*(7-(-1)^n)/2. [Paolo P. Lava, Apr 20 2012]
Showing 1-3 of 3 results.